Definition: An encryption scheme $T_{s E}=$ (Encrypt, Decrypt) is secure against chosen-plaintext attacks (CPA-secure) it for all efficient adversaries A :

$$
\operatorname{CPAAdv}\left[A, \pi_{S E}\right]=\left|\operatorname{Pr}\left[\omega_{0}=1\right]-\operatorname{Pr}\left[\omega_{1}=1\right]\right|=\text { neg. }
$$

where $W_{b}(b \in\{0,1\})$ is the output of the following experiment:

$$
b \in\{0,1\}
$$

 challenger $k \AA K$
$\xrightarrow[\text { Encrypt }\left(k, m_{b}\right)]{\text { min }} C$
\longleftarrow same idea as in original semantic security game, but allow adversary to make encryption queries (also called a "left-or-right" oracle)
output of experiment ω_{b}
$\left[\begin{array}{l}\text { Adversary's goal is to guess which of } m_{0} \text { or } m_{1} \text { was encrypted, given access } \\ \text { to an encryption oracle (ie., adversary gets to see encryptions of messages } \\ \text { of its choice. }\end{array}\right]$
Claim. A stream cipher is not CPA-secure.
Proof. Consider the following adversary:
adversary

choose $m_{0}, m_{1} \in M$$\frac{$| $b \in\{0,1\}$ |
| :---: |
| \downarrow |}{\(\substack{ \\

challenger}\)} | $s^{R}\{0,1\}^{\lambda}$ |
| :--- |

$$
\text { where } m_{0} \neq m_{1}
$$

$$
\begin{array}{rll}
& \operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]=0 \quad \text { since } c^{\prime}=m_{0} \oplus G(s)=c \\
& \operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]=1 & \text { since } c^{\prime}=m_{1} \oplus G(s) \neq c \\
\Rightarrow & \operatorname{cPAAds}\left[A, \pi_{\mathrm{sE}}\right]=1 &
\end{array}
$$

output O if $c=c^{\prime}$
output 1 if $c \neq c^{\prime}$

Observe: Above attack works for any deterministic encryption scheme.
\Rightarrow CPA-secure encryption must be randomized!
\Rightarrow To be rewable, cannot be deterministic. Encrypting the same message twice should not reveal that identical messages were encrypted.

To build a CPA-secure encryption scheme, we will use a "block cipher"

- Block cipher is an invertible keyed function that takes a block of n input bits and produces a block of n output bits
- Examples include 3DES (key size 168 bits, block size 64 bits)

AES (key size 128 bits, block size 128 bits)
block ciphers
Will define block ciphers abstractly first: pseudorandom functions (PREs) and pseudorandom permutations (PRPs)
General idea: PREs behave like random functions
PRPs behave like random permutations

Definition. A function $F: K \times x \rightarrow y$ with key-space K, domain x, and range y is a psecudorandom function (PRF) if for all efficient adversaries $A,\left|\omega_{0}-\omega_{1}\right|=$ neg., where ω_{b} is the probability the adversary outputs 1 in the following experiment:

Challenger 1 $b \in\{0,1\}$

$$
\begin{array}{ll}
k \bumpeq k ; f(\cdot) \leftarrow F(k, \cdot) & \text { if } b=0 \\
f \& F_{\text {mus }}(x, y] & \text { if } b=1
\end{array}
$$

2 the space of all possible functions from $x \rightarrow y$
(function $f \in \operatorname{Funs}[x y]$ can be represented by a truth table ot size $|y|^{|x|}$) - this is usually exponentially large!

$$
\operatorname{PRFAdv}[A, F]=\left|\omega_{0}-W_{1}\right|=\mid \operatorname{Pr}[A \text { outatats } 1 \mid b=0]-\operatorname{Pr}[A \text { outputs } 1 \mid b=1] \mid
$$

Intuitively: input-output behavior of a PRF is indistinguishable from that of a random function (to any compatationally-bounded
adversary)

Definition: A function $F: K \times X \rightarrow X$ is a peudarcundan permutation (PRP) if

- for all keys $k, F(k, \cdot)$ is a permutation and moreover, there exists an efficient algorithm to compute $F^{-1}(k, \cdot)$:

$$
\forall k \in K: \forall x \in X: F^{-1}(k, F(k, x))=x
$$

- for $k \nLeftarrow K$, the input-outpat behavior of $F(k, \cdot)$ is computationally indistinguishable from $f(\cdot)$ when $f \stackrel{R}{\mathbb{R}} \operatorname{Perm}[x]$ and $\operatorname{Perm}[x]$ is the set of all permutations on X (analogous to PRF security)

Note: a block cipher is another term for PRP (just like stream ciphers are PRGs)

Observe that a block cipher can be used to construct a PRG:
$F:\{0,1\}^{\lambda} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher
Define $G:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{\ln }$ as
$G(k)=F(k, 1)\|F(k, 2)\| \cdots \| F(k, l) \quad \leftarrow$ this stream cipher allows random access!
string concatenation write input as an n-bit string
We said PRP above
(will revisit this) 7
(just require that $n>\log l$)

Theorem. If F is a secure PRF, then G is a secure PRG.
Proof. As usual, we show the contrapositive: if G is not a secure PRG, then F is not a secure PRF.
Suppose we have efficient adversary A for G. We use A to build adversary for F :
Expects to see Algorithm for breaking F

$$
b=0: k^{k} k ; t \overline{\leftarrow G(k)}
$$

$$
b=1: t \leftarrow\{0,1\}^{\ln }
$$

Algorithm A

But... we used a block cipher (PRP) in our construction above. Does the proof still go through?
Not quite...
for a random function, $f(1)=f(2)$ with probability $\left.\frac{1}{2^{n}}\right\}$ but 2^{-n} might be very very small...
for a random permutation, $f(1)=f(2)$ with probability 0$] \quad$ adversary won't notice unless it sees a "collision" [i.e., two values x, y where

$$
f(x)=f(y)]
$$

PRF Switching Lemma. Let $F: K \times X \rightarrow X$ be a secure PRP. Then, for any Q-query adversary A :

$$
\left|\operatorname{PRPA}_{d v}[A, F]-\operatorname{PRFAdv}[A, F]\right| \leqslant \frac{Q^{2}}{2|x|}
$$

Proof Idea. Adversary essentially cannot tell the difference unless it sees a collision. If there is no collision, then it is just seeing random values. How many queries before there is a collision? Birthday paradox: $Q \sim \sqrt{|x|}$

Take-away: If $|X|$ is large (egg., exponential), then we can use a PRP as a PRF.

- 30ES: $n=64$ so $|x|=2^{64} \quad\left[f\right.$ adversary makes $<2^{32}$ queries, then can use it as a PRF]
- ABS: $n=128$ so $|x|=2^{128} \quad\left[i f\right.$ adversary makes $\ll 2^{64}$ queries, then can use it as a PRF]

Thus for: PRP/PRF in "counter mode" gives us a stream cipher (one-time encryption scheme)
typically, the IV is divided into a
How do we reuse it? Choose a random starting point (called an initialization vector) nonce (value that does not repeat) and "randomized counter mode"
a counter: IV $=$ nonce ll counter

| m_{1} | m_{2} | m_{3} | m_{4} |
| :--- | :--- | :--- | :--- |\quad divide message into blocks (based on block size of PRF)

random value
\oplus

Value			
IV	$F(k, I v)$	$F(k, I V+1)$	$F(k, I V+2)$

| IV | c_{1} | c_{2} | c_{3} | c_{4} |
| :--- | :--- | :--- | :--- | :--- |\quad ciphertext

observe: ciphertext is longer than the message (required for CPA security)

Theorem: Let $F: K \times x \rightarrow y$ be a secure PRF and let TCTR denote the randomized counter made encryption scheme from above for l-block messages $\left(\eta=x^{\leq l}\right)$. Then, for all efficient $C P A$ adversaries A, there exists an efficient PRF adversary B such that

$$
C \operatorname{PAAdv}\left[A, \pi_{c T R}\right] \leq \frac{4 Q^{2} \ell}{|x|}+2 \cdot \operatorname{PRFAdv}[B, F]
$$

$\uparrow Q$: number of encryption queries
l : number of blocks in message

Intuition: 1. If there are no collisions (i.e., PRF never evaluated on the same block), then it is as if everything is encrypted under a fresh one-time pad.
2. Collision event: $(x, x+1, \ldots, x+l-1)$ overlaps with $\left(x^{\prime}, x^{\prime}+1, \ldots, x^{\prime}+l-1\right)$ when $x, x^{\prime} \stackrel{R}{\leftarrow} x$

\simeq probability that x^{\prime} lies in this interval is $\leqslant \frac{2 \ell}{|x|}$
There are $\leqslant Q^{2}$ possible pairs $\left(x, x^{\prime}\right)$, so by a union bound,

$$
\operatorname{Pr}[\text { collision }] \leqslant \frac{2 \ell Q^{2}}{|x|}
$$

3. Remaining factor of 2 in advantage due to intermediate distribution (hybrid argument):

Encrypt m_{0} with PRF

$$
\sum \operatorname{PRFAdv}[B, F]+\frac{2 \ell Q^{2}}{|x|}
$$

Encrypt mo with fresh onetime pad 0
Encrypt m, with fresh one-time pad
Encrypt m, with PRF

$$
\mathcal{Q} \operatorname{PRFAdv}^{<}[B, F]+\frac{2 \ell Q^{2}}{|x|}
$$

Interpretation: If $|x|=2^{128}$ (egg., AES), and messages are $1 M B$ long (2 2^{16} blocks) and we want the distinguishing advantage to be below 2^{-32}, then we can use the same key to encrypt

$$
Q \leqslant \sqrt{\frac{|x| \cdot 2^{-32}}{4 l}}=\sqrt{\frac{2^{96}}{2^{18}}}=\sqrt{2^{78}}=2^{39} \quad(\sim 1 \text { trillion messages! })
$$

