Definition: An encryption scheme TISE = (Encrypt, Decrypt) is secure against chosen-plaintext attacks (CPA-secure) if for all efficient adversaries A:

CPARLU[A, TISE] =
$$\Pr[W_0 = 1] - \Pr[W_1 = 1] = real.$$

challenger

Claim. A stream cipher is not CPA-secure.

Proof. Consider the following adversary:

	Pesars			
adversary	challenger			
choose mo, m, EM	See toily		$P_{r}[b'=1 b=0]=0$	since c' = m₀ ⊕ G(s) = C
where mo \$ m1			$P_{c}[b' = 1 b = 1] = 1$	since c' = m, 🕀 G(s) # C
<u> </u>	→	⇒	CRAAJ [A, TISE] = 1	
$c = m_0 \oplus G(s)$				

$$m_{o}, m_{i}$$

 $c^{t} = m_{b} \oplus G(s)$

output 0 if c=c' output 1 if c≠c'

Observe: Above attack works for any deterministic encryption scheme.

=> CPA-secure encryption must be <u>randomized</u>!

To be reusable, cannot be deterministic. Encrypting the same message twice should not reveal that identical messages were encrypted.

To build a CPA-secure encryption scheme, we will use a "block cipher"

"Block cipher is an invertible keyed function that takes a block of n input bits and produces a block of n output bits T Examples include 3DES (key size 168 bits, block size 64 bits)

AES (key size 128 bits, block size 128 bits) block ciphers Will define block ciphers aborractly first: pseudorandom functions (PRFs) and pseudorandom permutations (PRPs) L> General idea: PRFs behave like random functions

PRPs behave like random permutations

<u>Definition</u> . A function F	· K×x →y,	sith key-space	K, domain X, and range	z y is a pseudon	andom function (PRF) if fer all
					outputs I in the following
experiment:			be {0,13	1	
	adversary		Challenger		
			$k \stackrel{\forall}{\leftarrow} K; f(\cdot) \leftarrow F(k, \cdot)$);fb=0	
		~	f f Funs [X, Y]	if b = 1	
	-	$\sim \chi$	the space of	all possible function	s from X→Y

$$\frac{f(x)}{f(x)} \xrightarrow{G} \frac{f(x)}{f(x)} \xrightarrow{G} \frac{f(x)}{f(x$$

↓ 6'€{0,1}

Intuitively: input-output behavior of a PRF is indistinguishable from that of a random function (to any computationally-bounded $|K| = 2^{168} |F_{uns}[X, y]| = (2^{64})^{(2^{64})}$ $|K| = 2^{128} |F_{uns}[X, y]| = (2^{128})^{(2^{128})}$ adversary) 3DES: ${\{0,1\}}^{168} \times {\{0,1\}}^{64} \rightarrow {\{0,1\}}^{64}$ AES: ${\{0,1\}}^{128} \times {\{0,1\}}^{123} \rightarrow {\{0,1\}}^{123}$) space of random functions is exponentially lager than key-speced

Definition: A function $F: K \times X \rightarrow X$ is a greader and permutation (PRP) of

- for all keys k, $F(k, \cdot)$ is a permutation and moreover, there exists an efficient algorithm to compute $F^{-1}(k, \cdot):$

$$\forall k \in K : \forall x \in X : F^{-1}(k, F(k, x)) = \gamma$$

- for $k \stackrel{P}{=} K$, the input-output behavior of $F(k, \cdot)$ is computationally indistinguishable from $f(\cdot)$ where $f \stackrel{P}{=} Perm[X]$ and Perm[X] is the set of all permutations on X (analogous to PRF security)

Note: a block cipher is another term for PRP (just like stream ciphers are PRGs)

Observe that a block optic can be used to construct a TRG:
F:
$$(a_1^{1/2} (a_1^{1/2} \rightarrow (a_1)^{1/2})$$
 be a block optic
Define G: $(a_1^{1/2} \rightarrow (a_1)^{1/2})$ be a block optic
G(b) = F(b, 1) ||F(b, 2)|| ··||F(b, 2)|
Therem. If F a a musc PRF, Bin G is a secure TRG. Then F is not a secure PRF.
Support are as loss the compation: if G is not a secure TRG, then F is not a secure PRF.
Support are formed and the compation if G is not a secure TRG. The PS is not a secure PRF.
Support are formed for banks of the compation if G is not a secure TRG. The PS is not a secure PRF.
Support are formed for banks of the compation if G is not a secure TRG. The PS is not a secure TRF.
Support are formed for banks of the compation if G is not a secure TRG. If $I \neq a_1 f_1$ and be defined
the probability is the G(b)
beside the first is the G(b)
 $b = 2: f \neq d free [how the first is the compation if G is not a secure TRG. If $I \neq a_1 f_1$ and be a different is a model of the probability of the first is the G(b)
 $b = 2: f \neq d free [how the first is the first is not in secure TRF. Support and the secure form is a secure that is a model of the probability of the first is the G(b)
 $b = 2: f \neq d free [how the first is the first is not in secure trees the first is the first is$$$

Thus for: PRP/PRF in "counter mode" gives us a stream cipher (one-time encryption scheme)

How do we reuse it? Choose a random starting point (called an initialization vector) nonce (value that does not repeat) and "randomized counter mode" a counter: IV = noncell counter

> m₁ m₂ m₃ m₄ divide message into blocks (based on block size of PRF) random value ⊕ IV F(k,IV) F(k,IV+1) F(k,IV+2) F(k,IV+3)

IV C1 C2 C3 C4 ciphertext

Observe: Ciphertext is brager than the message (required for CPA security)

<u>Theorem</u>: Let $F: K \times X \rightarrow Y$ be a secure PRF and let TI_{CTR} denote the randomized counter mode encryption scheme from above for l-block messages ($M = \chi^{\leq \ell}$). Then, for all efficient CPA adversaries A, there exists an efficient PRF adversary B such that

$$(PAAdv[A, Tlerr] \leq \frac{4Q^2k}{|X|} + J \cdot PRFAdv[B,F]$$

 $Q: number of encryption queries$
 $l: number of blocks in message$

Intuition: 1. If there are no collisions (i.e., PRF never evaluated on the same block), then it is as if everything is encrypted under a fresh one-time pad.

2. Collision event: (X, X+1, ..., X+l-1) overlaps with (X', X'+1,..., X'+l-1) when X, X' & X

r probability that x' lies in this interval is $\leq \frac{2\ell}{1\chi_1}$

There are
$$\leq Q^2$$
 possible poirs (x, x') , so by a union bound,
 $Pr[collision] \leq \frac{2LQ^2}{|\chi|}$

3. Remaining factor of 2 in advantage due to intermediate distribution (hybrid argument): Encrypt mo with PRF Encrypt mo with fresh one-time pad Encrypt m, with fresh one-time pad Encrypt m, with PRF PRFAdv[B,F] + $\frac{2lQ^2}{1\chi_1}$

 $\frac{\text{Interpretation}}{\text{If } |X| = 2^{128} \text{ (e.g., AES), and messages are 1 MB long } (2^{16} \text{ blocks)} \text{ and we want the distinguishing advantage}$ $to be below <math>2^{-32}$, then we can use the same key to encrypt $Q \leq \sqrt{\frac{|X| \cdot 2^{-52}}{4L}} = \sqrt{\frac{2^{96}}{2^{19}}} = \sqrt{2^{78}} = 2^{39} (\sim 1 \text{ trillion messages}!)$