Nonce-based counter mode: divide IV into two pieces: IV = nonce ll counter

$$
\uparrow
$$

value that does not repeat
Common choices: $\left.\begin{array}{r}64 \text {-bit nonce, } 64 \text {-bit counter } \\ 96-\text { bit nonce, } 32 \text {-bit counter }\end{array}\right\} \begin{array}{r}\text { only nonce needs to be sent! } \\ \text { (slightly smaller ciphertexts) }\end{array}$
Only requirement for security is that IV does not repeat:

- Option 1: Choose randomly (either IV or nonce)
- Option 2: If sender + recipient have shared state (eg., packet counter), can just use a counter, in which case, IV/nonce does not have to be sent
(CTR)
Counter mode is parallelizable, simple-to-implement, just requires PRF - preferred mode of using block ciphers

Other block cipher modes of operation:
Cipherblock chaining (CBC): common mode in the past (e.g., TLS I.O, still widely used today)

Theorem: Let $F: K \times X \rightarrow y$ be a secure PRF and let $\Pi_{C B C}$ denote the CBC encryption scheme for l-block messages $\left(m=x^{\leq l}\right)$. Then, for all efficient $C P A$ adversaries A, there exists an efficient $P R F$ adversary B such that

$$
C \operatorname{PAAdv}\left[A, \pi_{C B C}\right] \leqslant \frac{2 Q^{2} l^{2}}{|x|}+2 \cdot \operatorname{PRFAdv}[B, F]
$$

Q: number of encryption queries
ℓ : number of blocks in message
Intuition: similar to analysis of randomized counter mode:

1. Ciphertext is indistinguishable from random string if PRP is evaluated on distinct inputs
2. When encrypting, $P R P$ is invoked on ℓ random blocks, so after Q queries, we have $Q l$ random blocks.
\Rightarrow Collision probability $\leq \frac{Q^{2} l^{2}}{|x|} \longleftarrow$ this is larger than collision prob. for randomized counter mode by a factor of $\frac{l}{2}$ [overlap of Q random intervals vs. $Q l$ random points]
3. Factor of 2 arises for same reason as before

Interpretation. $C B C$ mode provides weaker security compared to counter mode: $\frac{2 Q^{2} l^{2}}{|x|}$ vs. $\frac{4 Q^{2} l}{|x|}$
Concretely: for same parameters as before (1 MB messages, 2^{-32} distinguishing advantage):

$$
Q \leq \sqrt{\frac{|x| \cdot 2^{-32}}{2 l^{2}}}=\sqrt{\frac{2^{128} \cdot 2^{-32}}{2\left(2^{16}\right)^{2}}}=\sqrt{2^{63}}=2^{31.5} \quad(\sim l \text { billion messages })
$$

$\longrightarrow 2^{7.5} \sim 180 \times$ smaller than using counter mode

Padding in CBC mode: each ciptertext block is computed by feeding a message block into the PRP
\Rightarrow message must be an even multiple of the block size
\Rightarrow when used in practice, reed to pad messages
Can we pad with zeroes? Cannot decrypt! What if original message ended with a bench of zeroes?

Requirement: padding must be invertible
CBC padding in TLS 1.0: if k bytes of padding is needed, then append k bytes to the end, with each byte set to $k-1$ (for AES-CBC) if O bytes of padding is needed, them append a block of 16 bytes, with each byte equal to 15 \rightarrow dummy block needed to ensure pad is invertible [injective functions must expand:
\rightarrow called PKCS\#5/PKCS\#7 (publickey cryptography standards)

$$
\left|\{0,1\}^{\leq 256}\right|>\left|\{0,1\}^{256}\right|
$$

Need to pad in CBC encryption can be exploited in "padding oracle" attacks

Padding in CBC can be avoided wing idea called "ciphertext stealing" (as long as messages are more than 1 block) interesting traffic analysis attack: each keystroke is sent in separate packet, so " packets leaks info on lenth
Comparing CTR mode to CBC mode: of user's password!

CTR mode

1. no padding needed (shorter ciphertexts)
2. parallelizable
3. only requires PRF (no need to invert)
4. tighter security
5. IVs have to be non-repeating easy to implement: (and spaced far apart)
$C B C$ mode
6. padding needed $\longleftarrow\binom{$ egg., encrypted ley strokes) }{ over SSH }
7. Sequential
8. requires PRP
9. less tight security (re-key more often) IV $=$ nonce $l l$ counter 5 . requires unpredictable \uparrow only reeds to be non-repeating (can be predictable)

1 block + I byte with CTR 2 blocks with CBC
requires more structured primition, more code to implement forwent and backuard evaluation
\qquad TVS 1.0 used predictable IVs (see HW1 for an attack) SSH vI used a 0 IV (even worse!)

Bottom-line: use randomized or nonce-based counter mode whenever possible: simpler, easier, and better than CBC!

A tempting and bad way to use a block cipher: ECB mode (electronic codebook)

Encryption: simply apply block cipher to each block of the message
Decryption: simply invert each block of the ciphertext
Never use ebb mode for encryption!

