
beintegrity: Confidentiality alone not sufficient, also need ageintegrity. Otherwise adversary can tamper with the message

(e.g., "Send $100 to Bob" -> "Send $100 to Eve")

In some cases (e.g., software patches), integrity more important than confidentiality
Idea: Append a "tag" (also called a "signature") to the message to prove integrity (property we want is tags should be hard to forge)

his tolerates a single error

of
t

(better error-correcting codes can do much

ovation.Thetagshouldbe computedusingakeyedfunctioncheck) I simple example is to set tag to be the paritypre
better)

->this was used in SSH v (1995) for data integrity! Fixed in SSH V2 (1996)

->also used in WEP (802.1(b) protocol for integrity
- also broken!

#blem: If there is no key, aone can compute
it! Adversary can tamper with message

and compute the new tag.
#

inition. A message authentication code (MAC) with key-space K, message space M and tag space T is a tuple of

algorithms TIMA) = (Sign, Verify):
Sign: 12xM + T & Must be efficiently - computable
Verify: kxMx+ - 90,13

tress: UkEK, UmtM:

↑of Verify (K, m, Sign(k,m)) =1] = 1

A
Sign can be a romized algorithm

#security: Intuitively, adversary should not be able to compute a tag on any message without knowledge of the key
->Moreover, since adversary might be able to see tags on existing messages (e.g., signed software

updates), it should not help towards creating a new MAC

adversary gets to choose

messages to be signed
--r

Ainition. A MAC TmAc: (Sign, Verify) satisfies existential unforgeability against chosen message attacks (EUF-CMA) If for all efficient

adversaries A. MACAdvIA, TMAz] =PrIW=1) = neg((x), where W is the output of the following security game:
adversary As usual, i denotes the length of the MAC secret key

(e.g., log (K) =poly(x))Icameo &ote: the key can also be sampled by a special Keybon

↓ - algorithm (for simplicity, we just define it to be

(m*,t*) uniformly random

Let m,
..., MQ be the signing queries the adversary submits to the challenger, and let tit Signk,mi) be the challenger's

responses.Then, n
= 1 if and only if:

Verify (k,m*, t*) = 1 and (m*, t*) (((m, t1), (Ma, tal]

MAC security notion says that adversary cannot produce a new tag on any message even if it gets to obtain tags on messages of its

choosing.

First, we show that we can directly construct a MAC from any PRE.

*from PRFS: LetF:Kxr -> T be a PRF. We construct a MAC TIMAC over (K,M, T) as follows:

Sign (k,m):outputt -> G(k,m)

Verify (k,m,t): output1 if t =F(k,m) and 0 otherwise

#eorem. If Fis a secure PRF with a sufficientlylarge range, then TMAC defined above is a secure MAC. Specifically,
for everyefficientMAC adversary A, there exists an efficientPRFadversaryBsuch that

MACAdvIA, TIMAc] < PREAdvEB,F]+
initionfor proof:1. OutputofPRFis computationallyindistinguishable from thatof a trulyrandom function.

1. If we replace the PRFwith a trulyrandom function, adversarywins the MAC
game

onlyif it

correctlypredicts the random function ata new point.Success probabilityis then exactly ().

#mplication: Any PRFwith large outputspace can be used as a MAC.

↳ AES has 128-bitoutputspace, so can be used as a MAC

⑩rawback:Domain of AES is 128-bits, so can only sign 128-bit(/6-byte) messages

How do we sign longer messages? We will lookattwo types of constructions:
1. Constructing a large-domain PRE from a small-domain PRF (i.e., AES)

2. Hash-based constructions

Approach1: use CBC (without IV)

↓* o-output
Notencrypting messages so no need for IV (or intermediate blocks)
↳ Mode often called "raw-CBC"

Raw-CBC is a wayto
build a domain PRFfrom a domain one

↳ Can show securityfor "prefix-free"messages more precisely, raw -CBC is a prefix-free PRF: pseudorandom as long
⑪ [

as PRFnever evaluated on two values where one is a prefixof other
1

includes fixedlength
messages as a special case

Butnotsecure for viablelength messages: "Extension attack"

1. Queryfor MAC on arbitrary blockX:

tag t#-F(k,x) ↑ # of-F(k,x) =t-

2. Outputforgeryon message (X,X*t) and tagt => t is a valid tug on tendedmessage (4, 50x)
↳ Adversarysucceed with advantage I

raw CBC can be used to build a MAC on fixedlength messages, butnotvariable
- length messages

(more generally, prefix-free)
(ECBC)

For variable- length messages, we use "encrypted CBC": standards for banking/financial services
-

↳)
variantused in ANSI X9.9, ANSI X19.9 standards criticalforsecuritykeynotseehere

I
apply another PRFwith a ferentkey to the outputof rawCB

↓* ->output,
To use encrypted (BC-MAC, we need to assume message length is even multiple of block size (similar to CBC encryption)
↳ to sign messages thatare nota multiple of the block size, we need to firsthad the message
↳>

as was the case with encryption, padding mustbe injective
& In the case of encryption, injectivityneeded for correctness

& in the case ofintegrity, injectivity needed for purity [ifpad(mo) =pad(m), mo and m, will have the sameand
standard approach to pad: append 1000...0 to fill up block

[ANSIX9.9 and ANSIX9.19 standards]
- Note: if message is an even multiple of the block length, need to introduce a dummy block

- Necessaryfor anyinjective function:190,13341 > 190,13")
-

This is a padding scheme [PKCS #) thatwe discuss previouslyinthe contextof CBC encryption
is a padding scheme)

Encrypted CBC-MAC drawbacks: always need at leastIPRFevaluations (using differentkeys) especiallybad for authenticating
messages mustbe padded to block size

3 short(e.g., single-byte) messages

Better approach: raw CBC-MAC secure for prefix-free messages
↳ Can we apply a "prefix-free"encoding to the message?

-
equal - length messages cannothave one be prefixof other

-

tion1: cepend the message length to the message different- length messages differ
in firstblock

Problematic if we do notknow message length atthe beginning (e.g., in a streaming setting)
Still requires padding message to multiple ofblock size)

-

otion1: Applya random secretshiftto the lastblock of the
message

(x,X2, ..., Xe) + (x, X2, ..., Xe0K) where k*x

Adversarythatdoes notknow I cannotconstructtwo messages thatare prefixes exceptwith1. probability(/(x) (byguessing K)

basis for CMAC (standardized byNISTin 2003)

A parallelizable MAC IPMAC) - general idea:

~
derived as F(k,0r) - so keyis justk,

↑() P(R,.) are important- otherwise, adversarycan

P(k,1) ④ P(k,l)- ↳ #rmute the blocks->

↑ "mask"term is of the form 8..K where

multiplication is done over GF(2") where n isAppi. efficientevaluation)

the blocksize (constants Vi carefullychosen for

Can use similar ideas as CMAC (randomized prefix-free encoding) to
supportmessages thatis notconstantmultiple of block size

Parallel structure of PMAC makes iteasilyupdateable (assuming F is a PRP)
↳
suppose we change block (from m[i] to m'li): PMAC is "incremental":

compute F- (k,,tag) # nm(i)P(k,i) *mizi)APle 3 can make local updates
old value withoutfull recomputation

In terms ofperformance:
-

On sequential machine, PMAC comparable to ECBC, NMAC, CMAC BestMAC we've seen so far, butnotused...
- On parallel machine, PMAC much better

3
Reason:patents:[notpatented anymore!

summary: Manytechniques to build a large-domain PRFfrom a small-domain one (domain extension for PRF)
↳ Each method (ECBC, CMAC, PMAC) gives a MAC on noblelength messages
↳ Manyof these designs (or their variants) are dardized

