
Sfar, we have focused on constructing a large-domain PRF from a small-domain PRF in order to construct a MAC

on long messages
->Alternative approach: "compress" the message itself (e.g. "hash" the message) and MAC the compressed representation

still require geability: two messages should not hash to the same value [otherwise trivial attack: if H(m): H(m2), then

MAC on m, is also MAC on mz]

↳*intuitive: it hash value is shorter than messages, collisions always exist - so we can only require that they are
hard to find

#inition. A hash function H: M -+ T is collision-resistant if for efficient adversaries A,

CRHFAdvIA,H] = Pr[(mo, m.) -> A:H(m0) =H(m)] = regl

As stated, definition is problematic: if IMK < IT1, then there always exists a collision mot, my so consider the adversary
that has mot, my hard coded and outputs not, my

->
Thus, some adversary ways exists (even if we may not be able to write it down explicitly)
↳

Formally, we model the hash function as being parameterized by an additional parameter (e.g., a "system parameter" or
a "key") so adversary cannot output a hard-coded collision

-
In practice, we have a concrete function (e.g., SHA-256) that does not include security or system parameters

-> believed to be hard to find a collision even though there are ely-many (SHA-256 can take imports
of bitrary length)

*

m CRHFS: Suppose we have the following
- A MAC (Sign, Verify) with key space it, message space Mo and tag space T (e.g.,Mo-doczyor
- A collision-resistant hash function H:M, -> Mo

Define S'(k,m) =S(k, H(m)) and

VCk, m,t) = U(k, H(m), t)

#orem. Suppose TMAC: (Sign, Verify) is a secure MAC and H is a CRHF. Then, TTMAC is a secure MA). Specifically,
for every efficient adversary A, there exist efficient adversaries Bo and B, such that

MACAdvIA, TMAc] <MACAdvIBo, TMAc] +CRHFAdvIB,F]

#Idea. Suppose A manages to produce a valid forgery - on a message m. Then, it must be the case that

- t is a valid MAC on H(m) under TMAC

- If A queries the signing oracle on m't m where H(m) =H(m), then A breaks collision-resistance of H
- If A never queries signing orack on on 'where H(m') =H(m), then it has never seen a MAC on H(m) under

TMAC. Thus, A breaks security of TMA).

[See Boneh-Shoup for formal argument - very
similar to above: just introduce event for collision occurring vs. not occurring

Constructing above is simple and elegant, but not used in practice
Fantage1: Implementation requires both a secure MAC and a secure CRHF: more complex, needatiple software/hardware

implementations
#antage2: CRHF is a less object and collision-finding is an offline attack (does not need to query verification oracle)

Adversary with substantial processing power can compromise collision-resistance (especially if hash size is small

#attackon CRHFs. Suppose we have a hash function H: 90,13" -> 20.170. How might we find a collision in 41 (without

knowing anything more about H)

#ach 1:Compute H(1), H(z), ..., H(20 + 1) ~size of hash output space-

2)

By Pigeonhole Principle, there must be at least one collision -runs in time O (IT)

#ach 2: Sample m:*(0,1)" and compute H(mi). Repeat until collision is found.

How many samples needed to find a collision?

·

BirthdayParadox). Take
any
sets where (S1-n. Suppose vi. ..., res. Then,

PrIEitj:ri =vj) = 1- e-tet

↑of. PrIEitj:ri=rj] = 1 - PrIvitj: riFrj]
I 1- PrIR*9r.3].PrIs*(r.r,3]..... PrIre*9rex...., 5,3]

=1- 12.....t
dominant term when

-1 - t(1 -E)
~ automatically holds for x<- ~ 1x11

v

2
2

-1-e-m since Itx <e* for all xtlp/eY = 1 + x+ + E+...)
mo

=In - positive for all x>0= 1 - 2

=1- ett
~ number ofpeople ina

roots

earthday
When 12-1.262, PrIcollision] = PrfEitj: ri=rj] > E. (For birthdays, 1025553 = 23]

->
Birthdays not uniformly distributed, but this only increases collision probability.

[Try proving this!]

For hash functions with range 90.13), we can use a birthday attack to find collisions in time 6t=24 can even do it with

&For 128-bit security (e.g., 20), we need the output to be 256-bits (hence SA-256) ->

tant space!

->Quantum collision-finding can be done in 24 Ccube root attack), though requires more space [via Hloyd'scycle findare I

↓HMA) (most widely used MAC)
So how do we use hash functions to obtain a secure MAC? Will revisit after studying constructions of CRHES.

Many cryptographic hash functions (e.g., MD5, SHA-1, SHA-256) follow the Merkle-Daigard paradigm: start from hash function on short

messages and use it to build a collision-resistant hash function on a long message:

1.Split message into blocks

2.Iteratively apply optionfunction Chash function on short inputs) to message
blocks

I I to.... te: chaining variables

-

IFMHRourIEHnTI
output

↓ : compression function

padding introduced so last block is multiple of block
to= IV

↓sirmust also include an encoding of the message
Hash functions are ministic, so IV is a fixed string length: typically of the form 100...011<s)

(defined in the specification) - can be taken to be all-zeroes string, where (S) is a length binary representation
but usually set to a custom value in constructions of message length in blocks

*call: 100...0 padding was used in the

ANSI standard

if not enough space to include the length, then

for SHA-256: extra block is added (similar to CBC encryption)
x=30,13256 =y

#

orem. Suppose h: x x y -> X be a compression function. Let H: y--> X be the Merkle-Damgard hash function
constructed from h. Then, if his collision-resistant. It is also collision- resistant.

#oSuppose we have a collision-finding algorithm A for H. We use A to build a collision-finding algorithm for hi
1.Run A to obtain a collision M and M(H(M) =H(M1 and MFM1)

1. Let M=

m,m... Me and M =m,m... my be the blocks of M and M, respectively. Let toit, ..., to and

tith...to be the corresponding chaining variables.
3.Since H(M) =H(M), it must be the case that

H(M) =h(tn- 1, mn)
=h(t-1, m1) =H(M')

If either taxftr or Mutmi, then we have a collision for h

Otherwise, Mn= mr and tux=tr. Since me and an include an encoding of the length of M and M, it must

be the case thatu =V. Now, consider the second-to-last block in the construction (with output turl = t'n+1):
tu+ = h (tur, Mn-1) =h(tmz, ma-) = tn-

Either we have a collision or turz:tuz and May: may. Repeat down the chain until we have collision or

we have concluded that mim,for all i, and so M=M, which is a contradiction.

&ote: Above constructing
is amential. Easy to adapt construction (using a tee) to obtain a parallelizable construction.

