So far, we have focused on constructing a large-domain PRF from a small-domain PRF in order to construct a MAC on long messages
\mapsto Alternative approach: "compress' the message itself (egg.; "hark" the message) and MAC the compressed representation

Still require unforgeability: two messages should not hash to the same value [otherwise trivial attack: if $H\left(m_{1}\right)=H\left(m_{2}\right)$, then MAC on m_{1} is also MAC on m_{2}]
counter-intuitive: if hash value is shorter than messages, collisions always exist - so we can only require that they are hard to find

Definition. A hash function $H: M \rightarrow T$ is collision-resistant if for efficient adversaries A,

$$
\operatorname{CRHFAdv}[A, H]=\operatorname{Pr}\left[\left(m_{0}, m_{1}\right) \leftarrow A: H\left(m_{0}\right)=H\left(m_{1}\right)\right]=\text { negl. }
$$

As stated, definition is publematic: if $|m|>|T|$, then there always exists a collision m_{0}^{*}, m_{1}^{*} so consider the adversary that has m_{0}^{*}, m_{1}^{*} hard coded and outputs m_{0}^{*}, m_{1}^{*}
\rightarrow Thus, some adversary always exists (even if we may not be able to write it down explicitly)
\rightarrow Formally, we model the hash function as being parameterized by an additional parameter leg., a "system parameter" or a "key") so adversary cannot output a hard-coded collision
\rightarrow In practice, we have a concrete function (eeg., SHA -256) that does not include security or system parameters \rightarrow believed to be hard to find a collision even though there are infinitely-many (SHA-256 can take inputs of arbitrary length)

MAC from CRHFs: Suppose we have the following

- A collision-resistant hash function $H: M_{1} \rightarrow M_{0}$

Define $S^{\prime}(k, m)=S(k, H(m))$ and

$$
V^{\prime}(k, m, t)=V(k, H(m), t)
$$

Theorem. Suppose $\Pi_{M A C}=($ Sign, Verify $)$ is a secure MAC and H is a CRHF. Then, $\Pi_{M A C}^{\prime}$ is a secure MAC. Specifically, for every efficient adversary A, there exist efficient adversaries B_{0} and B_{1} such that

$$
\operatorname{MACAdv}\left[A, \pi_{M A C}^{\prime}\right] \leqslant \operatorname{MACAdv}\left[B_{0}, \pi_{M A C}\right]+\operatorname{CRHFAdv}\left[B_{1}, H 1\right]
$$

Proof Idea. Suppose A manages to produce a valid forgery t on a message m. Then, it must be the case that - t is a valid MAC on $H(m)$ under $\pi_{\text {mac }}$

- If A queues the signing orack on $m^{\prime} \neq m$ where $H\left(m^{\prime}\right)=H(m)$, then A breaks collsion-resistance of H - If A never queries signing oracle on m^{\prime} where $H\left(m^{\prime}\right)=H(m)$, then it has never seen a MAC on $H(m)$ under Mac. Thus, A breaks security of $\Pi_{\text {mac. }}$.
[See Boreh-Shoup for formal argument - very similar to above: just introduce event for collision occurring vs. not occurring]
Constructing above is simple and elegant, but not used in practice
- Disadianatrge 1: Implementation requires both a secure MAC and a secure CRHF: more complex, need maniple softume/harduare implementations
- Disadvantage 2: CRHF is a key-less object and collision finding is an offline attack (does not need to query verification orack) Adversary with substantial preprocecsing power can compumire collision-resistance (especially if hash size is small)

Birthday attack on CRHF5. Suppose we have a hash function $H:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell}$. How might we find a collision in H (without knowing anything more abocet H)
Approach 1: Compute $H(1), H(2), \ldots, H\left(2^{\ell}+1\right)$ sire ot hash output spare \hookrightarrow By Pigenalule Pinciples, there must be at least one collision - runs in time $O\left(2^{l}\right)$
Approach 2: Sample $m_{i} \&\{0,1\}^{n}$ and compute $H\left(m_{i}\right)$. Repeat until collision is fond. How many samples needed to find a collision?

Theorem (Birthday Paradox). Take any set S where $|s|=n$. Suppose $r_{1}, \ldots, r_{e}{ }^{R} S$. Then,

$$
\operatorname{Pr}\left[\exists i \neq j: r_{i}=r_{j}\right] \geqslant 1-e^{-\frac{\ell(l-1)}{2 n}}
$$

Proof.

$$
\begin{aligned}
& \operatorname{Pr}\left[\exists_{i} \neq j: r_{i}=r_{j}\right]=1-\operatorname{Pr}\left[\forall i \neq j: r_{i} \neq r_{j}\right] \\
& =1-\operatorname{Pr}\left[r_{2} \notin\left\{r_{1}\right\}\right] \cdot \operatorname{Pr}\left[r_{3} \notin\left\{r_{2}, r_{3}\right\}\right] \cdots \cdot \operatorname{Pr}\left[r_{l} \notin\left\{r_{l-1}, \ldots, r_{3}\right\}\right] \\
& =1-\frac{n-1}{n} \cdot \frac{n-2}{n} \cdots \cdots \cdot \frac{n-\ell+1}{n} \\
& =1-\prod_{i=1}^{\ell-1}\left(1-\frac{i}{n}\right) \quad \text { automatically holds for } x \leqslant-1 \\
& \text { dominant term when } \\
& |x|<1 \\
& \geqslant 1-\prod_{i=1}^{l-1} e^{-i / n} \text { since } 1+x \leq e^{x} \text { for all } x \in \mathbb{R}\left[e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots\right] \\
& =1-e^{\sum_{i=1}^{-1}-i / n}=1-e^{-\frac{1}{n} \sum_{i=1}^{l-1} i} \\
& \text { positive for all } x>0 \\
& =1-e^{-\frac{(l-1) \ell}{2 n}}
\end{aligned}
$$

When $l \geqslant 1.2 \sqrt{n}, \operatorname{Pr}[$ collision $]=\operatorname{Pr}\left[\exists i f_{j}: r_{i}=r_{j}\right]>\frac{1}{2}$. [For birthdays, $\left.1.2 \sqrt{365} \approx 23\right]$
\leftrightarrows Birthdays not anifomly distributed, but this only increases collision probability.
[Try proving this!]

For hash functions with range $\{0,1\}^{l}$, we can use a birthday attack to find collisions in time $\sqrt{2^{l}}=2^{l / 2}$ can even do it with Constant space!
\rightarrow For 128 -bit security (eeg. 2^{18}), we reed the output to be 256-bits (hence SHA -256)
\longrightarrow Quantum collisiou-finding can be dore in $2^{2 / 3}$ (cube not attack), though requires more space

$$
\left[\begin{array}{l}
\text { via Floyd's eyck finding } \\
\text { algorithm }
\end{array}\right]
$$

\longrightarrow HMAC (most widely used MAC)
So how do we use hash functions to obtain a secure MAC? will revisit after studying constructions of CRHFs.

Many cryptographic hash functions (eeg., MDS, SHA-1, SHA-256) follas the Merkle-Damgard paradigm: start from hash function on short messages and use it to build a collision-resistant hash function on a long message:

1. Split message into blocks
2. Iteratively apply compression function (hash function on short inputs) to message blocks

Hash functions are deterministic, so IV is a fixed string (defined in the specification) - can be taken to be all-zeroes string, but usually set to a custom value in constructions
for SHA-256:

$$
x=\{0,1\}^{256}=y
$$

h : compression function
$t_{0} \ldots, t_{l}$: chaining variables
padding introduced so last block is multiple of block size
must also include an encoding of the message length: typically of the form $100 \cdots 0 \|\langle s\rangle$ where $\langle s\rangle$ is a fired-kngth binary representation of message length in blocks

Recall: 100 padding was used in the ANSI standard
if not enough space to include the length, then extra block is added (similar to CBC enorpption)

Theorem. Suppose $h: x \times y \rightarrow X$ be a compression function. Let $H: y \leq l \rightarrow X$ be the Merkle-Damghad hash function constructed from h. Then, if h is collision resistant, H is also collision-resistant.
Proof. Suppose we have a collision-finding algorithm A for H. We use A to build a collision-finding algorithm for h :

1. Run A to obtain a collision M and $M^{\prime}\left(H(M)=H\left(M^{\prime}\right)\right.$ and $\left.M \neq M^{\prime}\right)$.
2. Let $M=m_{1} m_{2} \cdots m_{u}$ and $M^{\prime}=m_{1}^{\prime} m_{2}^{\prime} \cdots m_{v}^{\prime}$ be the blocks of M and M^{\prime}, respectively. Let $t_{0}, t_{1}, \ldots, t_{u}$ and $t_{1}^{\prime} t_{2}^{\prime} \cdots t_{v}^{\prime}$ be the corresponding chaining variables.
3. Since $H(M)=H\left(M^{\prime}\right)$, it must be the case that

$$
H(M)=h\left(t_{u-1}, m_{u}\right)=h\left(t_{v-1}^{\prime}, m_{v}^{\prime}\right)=H\left(M^{\prime}\right)
$$

If either $t_{u-1} \neq t_{v-1}^{\prime}$ or $m_{u} \neq m_{v}^{\prime}$, then we have a collision for λ.
Otherwise, $m_{u}=m_{v}^{\prime}$ and $t_{u-1}=t_{v-1}^{\prime}$. Since m_{u} and m_{v}^{\prime} include an encoding of the length of M and M^{\prime}, it must be the case that $u=v$. Now, consider the second-to-last block in the construction (with output $t_{u-1}=t_{u-1}^{\prime}$):

$$
t_{u-1}=h\left(t_{u-2}, m_{u-1}\right)=h\left(t_{u-2}^{\prime}, m_{u-1}^{\prime}\right)=t_{u-1}^{\prime}
$$

Either we have a collision or $t_{u-2}=t_{u-2}^{\prime}$ and $m_{u-1}=m_{u-1}^{\prime}$. Repeat down the chain until we have collision or we have concluded that $m_{i}=m_{i}^{\prime}$ for all i, and so $M=M^{\prime}$, which is a contradiction.

Note: Above constructing is sequential). Easy to adapt construction (using a tree) to obtain a parallelizable construction.

