CS 346: Introduction to Cryptography

Attacks and Reductions in Cryptography

Instructor: David Wu

In this short note, we give several examples of proofs involving PRGs and PRFs.

PRG security. Let's begin by reviewing the PRG security game:

The PRG security game is played between an adversary \mathcal{A} and a challenger. Let $G \colon \{0,1\}^{\lambda} \to \{0,1\}^n$ be a candidate PRG. The game is parameterized by a bit $b \in \{0,1\}$:

- 1. If b = 0, the challenger samples a seed $s \stackrel{\mathbb{R}}{\leftarrow} \{0, 1\}^{\lambda}$ and computes $t \leftarrow G(s)$. If b = 1, the challenger samples a random string $t \stackrel{\mathbb{R}}{\leftarrow} \{0, 1\}^n$.
- 2. The challenger gives t to \mathcal{A} .
- 3. At the end of the game, \mathcal{A} outputs a bit $b' \in \{0, 1\}$.

For an adversary \mathcal{A} , we define its PRG distinguishing advantage PRGAdv[\mathcal{A} , G] to be the quantity

$$PRGAdv[\mathcal{A}, G] = |Pr[b' = 1 \mid b = 0] - Pr[b' = 1 \mid b = 1]|.$$

Finally, we say that a a PRG G is secure if for all efficient adversaries \mathcal{A} ,

$$\mathsf{PRGAdv}[\mathcal{A}, G] = \mathsf{negl}(\lambda).$$

We will often refer to this game (also called an "experiment") where b = 0 as $PRGExp_0[\mathcal{A}, G]$ and the game where b = 1 as $PRGExp_1[\mathcal{A}, G]$. In this case, we can also write

$$\mathsf{PRGAdv}[\mathcal{A},G] = \left| \mathsf{Pr} \left[\mathcal{A} \text{ outputs 1 in } \mathsf{PRGExp}_0[\mathcal{A},G] \right] - \mathsf{Pr} \left[\mathcal{A} \text{ outputs 1 in } \mathsf{PRGExp}_1[\mathcal{A},G] \right] \right|.$$

Example 1 (An Insecure PRG). Suppose $G: \{0,1\}^{\lambda} \to \{0,1\}^n$ is a secure PRG and define $G': \{0,1\}^{\lambda} \to \{0,1\}^{n+\lambda}$ to be G'(s) = G(s) ||s|. We show that G' is not a secure PRG.

Proof. We construct an adversary \mathcal{A} for G' as follows:

- 1. On input $t \in \{0, 1\}^{n+\lambda}$, \mathcal{A} parses the input as $t = t_1 || t_2$ where $t_1 \in \{0, 1\}^n$ and $t_2 \in \{0, 1\}^{\lambda}$.
- 2. Output 1 if $G(t_2) = t_1$ and 0 otherwise.

By construction, algorithm \mathcal{A} is efficient (i.e., runs in polynomial time). We compute \mathcal{A} 's distinguishing advantage:

- Suppose b = 0. In this case, $t \leftarrow G'(s)$ where $s \stackrel{\mathbb{R}}{\leftarrow} \{0, 1\}^{\lambda}$. By construction of G', $t = t_1 || t_2$ where $G(t_2) = t_1$. In this case, the adversary outputs 1 with probability 1.
- Suppose b=1. In this case, $t \stackrel{\mathbb{R}}{\leftarrow} \{0,1\}^{n+\lambda}$. In particular, t_1 and t_2 are independently uniform, so $\Pr[t_1 = G'(t_2)] = 1/2^n$.

The distinguishing advantage of \mathcal{A} is then

$$PRGAdv[\mathcal{A}, G'] = |Pr[b' = 1 \mid b = 0] - Pr[b' = 1 \mid b = 1]| = 1 - 2^{-n},$$

which is non-negligible.

Example 2 (A Secure PRG). Suppose $G: \{0,1\}^{\lambda} \to \{0,1\}^n$ is a secure PRG and define the function $G': \{0,1\}^{\lambda} \to \{0,1\}^n$ to be the function $G'(s) = G(s) \oplus 1^n$. Namely, G' simply flips the output bits of G. We show that if G is secure, then G' is also secure.

Proof. When proving statements of this form, we will prove the contrapositive:

If
$$G'$$
 is not a secure PRG, then G is not a secure PRG.

To prove the contrapositive, we begin by assuming that G' is not a secure PRG. This means that there exists an efficient adversary \mathcal{A} that breaks the security of G' with non-negligible advantage ε (i.e., PRGAdv[\mathcal{A} , G'] = ε). We use \mathcal{A} to construct an efficient adversary \mathcal{B} that breaks the security of G:

- 1. At the beginning of the game, algorithm \mathcal{B} receives a challenge $t \overset{\mathbb{R}}{\leftarrow} \{0,1\}^n$ from the challenger. We are constructing an adversary for the PRG security game for G. This game begins with the challenger sending a challenge $t \in \{0,1\}^n$ to the adversary where either $t \leftarrow G(s)$ or $t \overset{\mathbb{R}}{\leftarrow} \{0,1\}^n$.
- 2. Algorithm \mathcal{B} starts running algorithm \mathcal{A} . Essentially, we are constructing a reduction here. Our goal is to reduce the problem of distinguishing G to the problem of distinguishing G'. To do this, we will rely on our adversary \mathcal{A} for distinguishing G'.
- 3. Algorithm \mathcal{B} sends $t \oplus 1^n$ to \mathcal{A} and outputs whatever \mathcal{A} outputs. Algorithm \mathcal{A} is an adversary for G', so it expects a single input $t \in \{0,1\}^n$ where either $t \leftarrow G'(s)$ or $t \overset{\mathbb{R}}{\leftarrow} \{0,1\}^n$. Note that this is the only setting for which we have guarantees on the behavior of \mathcal{A} . The behavior of algorithm \mathcal{A} on a string drawn from some other distribution is *undefined*. As part of our analysis, we need to argue that \mathcal{B} correctly *simulates* the view of \mathcal{A} in the PRG distinguishing game against G'.

First, if \mathcal{A} is efficient, then \mathcal{B} is also efficient (by construction). It suffices to compute the distinguishing advantage of algorithm \mathcal{B} . We consider two cases:

• Suppose b = 0. Then, \mathcal{B} receives a string $t \leftarrow G(s)$ where $s \stackrel{\mathbb{R}}{\leftarrow} \{0,1\}^{\lambda}$. In this case, $t \oplus 1^n$ is precisely the value of G'(s). Namely, \mathcal{B} has simulated $\mathsf{PRGExp}_0[\mathcal{A}, G']$ for \mathcal{A} . Since \mathcal{A} is a distinguisher for G', this means that

$$\Pr\left[\mathcal{B} \text{ outputs 1} \mid b = 0\right] = \Pr\left[\mathcal{A} \text{ outputs 1 in } \mathsf{PRGExp}_0[\mathcal{A}, G']\right].$$

• Suppose b = 1. Then, \mathcal{B} receives a random string $t \stackrel{\mathbb{R}}{\leftarrow} \{0,1\}^n$. Since t is uniformly random over $\{0,1\}^n$, the string $t \oplus 1^n$ is also uniformly random over $\{0,1\}^n$. This means that \mathcal{B} has simulated $\mathsf{PRGExp}_1[\mathcal{A},G']$ for \mathcal{A} . This means that

$$\Pr\left[\mathcal{B} \text{ outputs 1} \mid b = 1\right] = \Pr\left[\mathcal{A} \text{ outputs 1 in } \mathsf{PRGExp}_1[\mathcal{A}, G']\right].$$

¹In the following description, we provide some clarifying remarks in green. These remarks are unnecessary in a formal proof.

We conclude now that the distinguishing advantage of \mathcal{B} is exactly

$$\begin{split} \mathsf{PRGAdv}[\mathcal{B},G] &= |\mathsf{Pr}\left[\mathcal{B} \text{ outputs 1} \mid b=0\right] - \mathsf{Pr}\left[\mathcal{B} \text{ outputs 1} \mid b=1\right]| \\ &= \left|\mathsf{Pr}\left[\mathcal{A} \text{ outputs 1 in } \mathsf{PRGExp}_0[\mathcal{A},G']\right] - \mathsf{Pr}\left[\mathcal{A} \text{ outputs 1 in } \mathsf{PRGExp}_1[\mathcal{A},G']\right]\right| \\ &= \mathsf{PRGAdv}[\mathcal{A},G'] = \varepsilon, \end{split}$$

which is non-negligible by assumption.

PRF security game. Next, we review the definition of a secure PRF. Let $F: \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ be a function with key-space \mathcal{K} , domain \mathcal{X} , and range \mathcal{Y} . The PRF security game is defined as follows:

The PRF security game is played between an adversary \mathcal{A} and a challenger. Let $F: \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ be a candidate PRF. The game is parameterized by a bit $b \in \{0, 1\}$:

- 1. If b = 0, then the challenger samples a key $k \stackrel{\mathbb{R}}{\leftarrow} \mathcal{K}$ and sets $f \leftarrow F(k, \cdot)$. If b = 1, the challenger samples a uniformly random function $f \stackrel{\mathbb{R}}{\leftarrow} \text{Funs}[\mathcal{X}, \mathcal{Y}]$.
- 2. The adversary chooses $x \in X$ and sends x to the challenger.
- 3. The challenger replies with f(x).
- 4. The adversary can continue to make queries to the adversary (repeating steps 2 and 3). At the end of the game, adversary outputs a bit $b' \in \{0, 1\}$.

For an adversary \mathcal{A} , we define the PRF distinguishing advantage PRFAdv[\mathcal{A} , F] to be the quantity

$$PRFAdv[\mathcal{A}, F] = |Pr[b' = 1 | b = 0] - Pr[b' = 1 | b = 1]|.$$

We say that a PRF F is secure if for all efficient adversaries \mathcal{A} ,

$$PRFAdv[\mathcal{A}, F] = negl(\lambda),$$

where λ is a security parameter (typically, the keys of the PRF are poly(λ) bits long: log $|\mathcal{K}| = \text{poly}(\lambda)$). Similar to the case with PRGs, we will often refer to the game (or "experiment") where b = 0 as PRFExp₀[\mathcal{A} , F] and the game where b = 1 as PRFExp₁[\mathcal{A} , F]. In this case, we can write

$$\mathsf{PRFAdv}[\mathcal{A},F] = \left| \mathsf{Pr} \left[\mathcal{A} \text{ outputs 1 in } \mathsf{PRFExp}_0[\mathcal{A},F] \right] - \mathsf{Pr} \left[\mathcal{A} \text{ outputs 1 in } \mathsf{PRFExp}_1[\mathcal{A},F] \right] \right|.$$

Example 3 (An Insecure PRF). Suppose $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is a secure PRF and define $F': \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ to be $F'(k,x) = F(k,x) \oplus F(k,x \oplus 1^n)$. We claim that F' is not a secure PRF.

Proof. We construct an adversary \mathcal{A} for F' as follows:

- 1. Submit the query $x_1 = 0^n$ to the challenger. The challenger replies with a value y_1 .
- 2. Submit the query $x_2 = 1^n$ to the challenger. The challenger replies with a value y_2 .
- 3. Output 1 if $y_1 = y_2$ and 0 otherwise.

By construction, \mathcal{A} is efficient (i.e., runs in polynomial time). We compute \mathcal{A} 's distinguishing advantage:

• Suppose b = 0. In this case, the challenger samples $k \stackrel{\mathbb{R}}{\leftarrow} \{0,1\}^n$ and replies with

$$y_1 = F'(k, x_1) = F(k, x_1) \oplus F(k, x_1 \oplus 1^n) = F(k, 0^n) \oplus F(k, 1^n)$$

$$y_2 = F'(k, x_2) = F(k, x_2) \oplus F(k, x_2 \oplus 1^n) = F(k, 1^n) \oplus F(k, 0^n).$$

In this case $y_1 = y_2$, and \mathcal{A} outputs 1 with probability 1.

• Suppose b=1. In this case, the challenger samples $f \stackrel{\mathbb{R}}{\leftarrow} \text{Funs}[\{0,1\}^n,\{0,1\}^n]$ and replies with $y_1=f(x_1)$ and $y_2=f(x_2)$. Since $x_1 \neq x_2$, y_1 and y_2 are independent and uniformly random. Thus, $\Pr[y_1=y_2]=1/2^n$.

The distinguishing advantage of \mathcal{A} is then

$$PRFAdv[\mathcal{A}, F'] = |Pr[b' = 1 \mid b = 0] - Pr[b' = 1 \mid b = 1]| = 1 - 2^{-n}$$

which is non-negligible.

Example 4 (A Secure PRF). Suppose $F: \mathcal{K} \times \mathcal{X} \to \{0, 1\}^n$ is a secure PRF. Then, the function $F': \mathcal{K}^2 \times \mathcal{X} \to \{0, 1\}^n$ where $F'((k_1, k_2), x) = F(k_1, x) \oplus F(k_2, x)$ is also a secure PRF.

Proof. Similar to the case with PRGs, we will prove the contrapositive:

If
$$F'$$
 is not a secure PRF, then F is not a secure PRF.

To prove the contrapositive, we begin by assuming that F' is not a secure PRF. This means that there exists an efficient adversary \mathcal{A} that breaks the security of F' with non-negligible advantage ε (i.e., PRFAdv[\mathcal{A} , F'] = ε). We use \mathcal{A} to construct an adversary \mathcal{B} that breaks the security of F:

- 1. Choose a key $k_2 \stackrel{\mathbb{R}}{\leftarrow} \mathcal{K}$.
- 2. Start running the adversary \mathcal{A} for F'.
 - (a) Whenever \mathcal{A} makes a query $x_i \in \mathcal{X}$, forward the query to the challenger to obtain a value $y_i \in \{0,1\}^n$. Give $y_i \oplus F(k_2, x_i)$ to \mathcal{A} .
- 3. Output whatever \mathcal{A} outputs.

Observe that the number of queries \mathcal{B} makes is the same as the number of queries that \mathcal{A} makes. Thus, if \mathcal{A} is efficient, then \mathcal{B} is also efficient. It suffices to compute the distinguishing advantage of algorithm \mathcal{B} . We consider two cases:

• Suppose b = 0. In this case, the challenger in $\mathsf{PRFExp}_0[\mathcal{B}, F]$ samples a key $k \overset{\mathbb{R}}{\leftarrow} \mathcal{K}$ and replies with $y_i \leftarrow F(k, x_i)$ on each query. Algorithm \mathcal{B} in turns replies to \mathcal{A} with the value

$$y_i \oplus F(k_2, x_i) = F(k, x_i) \oplus F(k_2, x_i) = F'((k, k_2), x_i).$$

Since k and k_2 are both sampled uniformly and independently from \mathcal{K} , algorithm \mathcal{B} answers all of \mathcal{A} 's queries according to the specification of PRFExp₀[\mathcal{A} , F']. Thus,

$$\Pr\left[\mathcal{B} \text{ outputs 1} \mid b = 0\right] = \Pr\left[\mathcal{A} \text{ outputs 1 in } \mathsf{PRFExp}_0[\mathcal{A}, F']\right].$$

• Suppose b=1. In this case, the challenger in $\mathsf{PRFExp}_1[\mathcal{B},F]$ samples $f \overset{\mathbb{R}}{\leftarrow} \mathsf{Funs}[\mathcal{X},\{0,1\}^n]$ and replies with $y_i \leftarrow f(x_i)$ on each query. Algorithm \mathcal{B} in turn replies to \mathcal{A} with the value $y_i \oplus F(k_2,x_i) = f(x_i) \oplus F(k_2,x_i)$. Since k_2 is independent of f, and f is a random function, the value of $f(x_i) \oplus F(k_2,x_i)$ is uniform and independently random over $\{0,1\}^n$. Thus, algorithm \mathcal{B} answers all of \mathcal{A} 's queries according to the specification of $\mathsf{PRFExp}_1[\mathcal{A},F']$, and so

$$\Pr\left[\mathcal{B} \text{ outputs 1} \mid b=1\right] = \Pr\left[\mathcal{A} \text{ outputs 1 in } \mathsf{PRFExp}_1[\mathcal{A}, F']\right].$$

By definition, the distinguishing advantage of $\mathcal B$ is then

$$\mathsf{PRFAdv}[\mathcal{B}, F] = |\mathsf{Pr}[\mathcal{B} \text{ outputs } 1 \mid b = 0] - \mathsf{Pr}[\mathcal{B} \text{ outputs } 1 \mid b = 1]| = \mathsf{PRFAdv}[\mathcal{A}, F'] = \varepsilon$$

which is non-negligible by assumption.