Attribute-based encryption (ABE): more fine-graired control to encrypted data

IBE: can encrypt to an identity (policy is basically checking equality)
$A B E$: can encrypt to genera policies
Key-policy $A B E$: ciphertexts are associated with attributes secret keys are associated wist policy
Example: attribute could be a classification level (unclassified, secret, top secret) policy could be (unclassified or secret)
attribute could describe a role (e.g., CS, math, physics, etc.) policy could be (CS or math)

We will describe policies as a Bodean formula:

CS
Math
Student
attributes

In a formula, every gate has fan-out 1 (each output of a gate can only be used once)

Will assume a polynomial number of attributes today
We will label the attributes by integers $1,2, \ldots, n$
Goyal-Pandey-Sahai-Waters ABE scheme:
Setup: For each $i \in[n]$, sample $t_{i} \leftarrow^{R} \mathbb{Z}_{p}$
Sample $\gamma \stackrel{R}{\leftarrow} \mathbb{Z}_{p}$
Output attribute keys $T_{1}=g^{t_{1}}, \ldots, T_{n}=g^{t_{n}}, h=e(g, g)^{\gamma}$

$$
\operatorname{mpk}=\left(T_{1}, \ldots, T_{n}, h\right) \quad m s k=\left(t_{1}, \ldots, t_{n}, \gamma\right)
$$

Encrypt (mpk, $S, m): O_{n}$ input $m p k=\left(T, \ldots, T_{n}, h\right)$ and a set of attributes $S \subseteq[n]$, and the message $m \in G_{T}$, sample $r \stackrel{R}{\mathbb{Z}} \mathbb{Z}_{p}$ and output

$$
c t=\left(S, T_{i}^{r}, h^{r} \cdot m\right)
$$

Key Gen (msk, P): We will start with an example, and formalize later. Idea is we will secret share the "secret key" γ according to the policy P.

for AND gate

sample $\gamma_{1}, \gamma_{2} \stackrel{R}{\leftarrow} Z_{p}$ such that $\gamma=\gamma+\gamma_{2}$
need both γ_{1} and γ_{2} to obtain γ
attributes

$$
\begin{aligned}
& \gamma_{1}, \gamma_{2} \stackrel{R}{\leftarrow} \mathbb{Z}_{p} \text { st. } \gamma_{1}+\gamma_{2}=\gamma \\
& \delta_{1}, \delta_{2} \stackrel{R}{\leftarrow} \mathbb{Z}_{p} \text { s.t. } \delta_{1}+\delta_{2}=\gamma
\end{aligned}
$$

for or gate

$\operatorname{set} \gamma_{1}=\gamma_{2}=\gamma$
either γ_{1} or γ_{2} needed to obtain γ

We refer to the exponents associated with the kat nodes as the shares of the master secret key associated with the attribute.
Key for policy P :

1. Secret share γ according to policy P
2. Let $\gamma_{i} \in \mathbb{Z}_{p}$ be the share associated with attribute i
3. The secret key for P is the set $g^{\gamma_{i}} t_{i}$ for each attribute i that appears in the policy
along with the policy P

Decryption (we will defer formal description to later)

$$
\begin{aligned}
& \gamma_{1}+\gamma_{2}=\gamma \\
& \delta_{1}+\delta_{2}=\gamma
\end{aligned}
$$

$\begin{array}{lllll}g^{\gamma_{1} / t_{1}} & g^{\gamma_{2} / t_{2}} & g^{\gamma_{2} / t_{3}} & g^{\delta_{1} / t_{4}} & g^{\delta 2 / t_{5}}\end{array}$ write each as k : for
each attribute each attribute
appearing in the policy
ciphertext: $S,\left\{T_{i}^{r}\right\}_{r \in S}, h^{r} \cdot m$

$$
g^{r t_{i}} \quad e(g, g)^{\prime \prime} \cdot m
$$

Suppose ciphertext has attributes $(2,4,5)$ ciphertext contains $g^{r t_{2}}, g^{r t_{4}}, g^{r t_{5}}$
user can pair $e\left(K_{2}, g^{r t_{2}}\right)=e\left(g^{\gamma_{2} / t_{2}}, g^{r t_{2}}\right)=e(g, g)^{\gamma_{2} r}$ can similarly obtain $e(g, g)^{\delta_{1} r}$ and $e(g, g)^{\delta_{2} r}$
\longrightarrow Observe that exponents $\gamma_{2} r, \delta_{1} r, \delta_{2} r$ are secret shaves of γ_{r}. If the attributes satisfy the policy, can use shaves to reconstruct $e(g, g)^{\gamma r}$ and decrypt. This relies on fact that secret sharing scheme has a linear reconstruction algorithm.

Summary of approach: ElGamal-style encryption
secret key: γ
public key: $h=e(g, g)^{\gamma}$
ciphertext includes $h^{r} \cdot m$
Normally in EIGamal, ciphertext contains g^{r} and γ is used to decrypt. With pairings, we can also use g^{γ} as the decryption key. \rightarrow But cannot just give out g^{γ}.
Instead: secret key contain secret share of g^{γ} according to policy P, but need a way to combine with attributes.
Approach: $\operatorname{set} K_{i}=g^{d_{i}} / t_{i}$ where d_{i} is a shave of γ and t_{i} is the attribute key.
Pair with $g^{t_{i} r}$ from ciphertext to obtain share of $e(g, g)$.
Secret shares for different keys are independent (no mixing and matching)

To describe the scheme more generally, we describe a linear secret sharif shin
Suppose we have a secret S. For each attribute t, we can associate with it a share S_{t}. Given a policy P and shaves $\left\{s_{t}\right\}_{t \in T}$, if $P(T)=1$, then should be able to recovers.

Idea: secret shave gate-by-gate:

recover s if you have either s_{1} or s_{2} recover $s-i f$ you have s_{1} and s_{2} \mapsto set $S_{1}=s_{2}=s$
\mapsto sample $S_{1} \stackrel{R}{\leftarrow} \mathbb{F}_{p}$ and set

$$
s_{2}=s-s_{1}
$$

\mapsto reconstruct by computing

$$
s_{1}+s_{2}=s
$$

\rightarrow no information given out with just 1 share

Compose to support general policies

$$
\begin{aligned}
& S_{1}, S_{3} \stackrel{R}{\leftarrow} \mathbb{Z}_{P} \\
& S_{A}=S_{1} \\
& S_{B}=S_{C}=S-S_{1} \\
& S_{D}=S_{3} \\
& S_{E}=S-S_{3}
\end{aligned}
$$

For the policy, we can associate with it a "share generating" matrix
For an AND gate, we can secret share s by sampling $\alpha \stackrel{R}{\leftarrow} \mathbb{F}_{p}$ and setting $s_{1}=s+\alpha$ and $s_{2}=-\alpha$:

$$
\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
s \\
\alpha
\end{array}\right]
$$

For an $O R$ gate, we secret share s by setting $s_{1}=s_{2}=s$

$$
\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right][s]
$$

General procedure:

1. Associate vector [1] with root node and initialize counter $c \leftarrow 1$
2. Proceed down the tree.

- If a node is an OR with label v, the children are associated with label v (i.e., they are identical to the parent).
- If a node is an AND with label v, we label the children with label $v\left\|O^{\operatorname{lon}(v)-c}\right\| 1$ and the other label with $O^{c} \|-1$. Observe that the sum of the shares is $v \| D^{\text {len }(v)-c}$. Finally, increment $c \leftarrow c+1$.

3. Pad all vectors with $O s$ to dimension C

Example: For policy above (A AND ($B \not \subset C$)) OR (D AND E), the vectors are as follows:

Share-generation matrix:
same shares we had before!

S_{A}
S_{B}
S_{D}
S_{E}

0 \& -1 \& 0 \\
0 \& -1 \& 0 \\
1 \& 0 \& 1 \\
0 \& 0 \& -1\end{array}\right]}_{M_{P}}=\left[$$
\begin{array}{c}S \\
\alpha_{1} \\
\alpha_{2}\end{array}
$$\right]=\left[$$
\begin{array}{c}S+\alpha_{1} \\
-\alpha_{1} \\
-\alpha_{1} \\
s+\alpha_{2} \\
-\alpha_{2}\end{array}
$$\right]\)

Main observation: if attributes satisfy policy, then vector $e_{1}^{\top}=[1,0, \ldots, 0]$ will be in the row span of $M p$
can show inductively: for every node v in the tree, if attributes satisfy the node v, then vector associated with v is in the row span of M_{P}
true for every leaf node and inductive step follows by construction

Converse also holds: if attributes do not satisfy policy, then e_{1}^{T} is not in the now span of M_{P}

Can express Boolean formula access structure as a linear secret sharing scheme

Boolean formula policy P on k attributes
\rightarrow share generation matrix M with k rows
If a set of attributes $S \subseteq[k]$ satisfies the policy, then there exists a vector $v \in \mathbb{Z}_{P}^{k}$ where $V_{i}=0$ for all $i \in S$ such that

$$
v^{\top} S=\left[\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right]
$$

(i.e., the first basis vector is in spanned by the rows associated with the attributes in S).

If S does not satisfy the policy, then $\left[\begin{array}{llll}1 & 0 & \cdots & 0\end{array}\right]$ is not spanned by the sows of S.
\longrightarrow Suppose v_{1}, \ldots, v_{n} are the vectors associated with S
Since $e_{1} \notin \operatorname{span}\left(v_{1}, \ldots, v_{n}\right)$, it must be the case that e_{1} has a component in the orthogonal complement of $\left\{v_{1}, \ldots, v_{n}\right\}$
This, there exists a vector w such that $w^{\top} v_{i}=0$ and $w^{\top} e_{1} \neq 0$. Without loss of generality, we assume the first component of w is 1 .

Setup (n) attribute universe n

$$
\begin{aligned}
t_{1}, \ldots, t_{n} \stackrel{R}{\leftarrow} \mathbb{Z}_{p} \quad \text { Set } T_{i} & =g^{t_{i}} \\
\gamma & h=c(g, g)^{\kappa}
\end{aligned}
$$

Set mpk $=\left(T_{1}, \ldots, T_{n}, h\right)$
Set msk $=\left(t_{1}, \ldots, t_{n}, \gamma\right)$
Encrypt $(m p k, S, m):$ sample $r \stackrel{R}{\mathbb{E}} \mathbb{Z}_{p}$ and $\operatorname{set} c t=\left(\left\{\left(i, T_{i}^{r}\right\}\right\}_{i} \in s, h^{r} \cdot m\right)$
Key $\operatorname{Gen}(m s k, M)$: here $M \in \mathbb{Z}_{p}^{k \times \ell}$ is the share-geverating matrix associated with the policy
sample $\alpha_{1}, \ldots, \alpha_{l-1} \stackrel{R}{\mathbb{Z}} \mathbb{Z}_{p}$ and compute the shares of γ :

$$
\left[\begin{array}{c}
s_{1} \\
\vdots \\
s_{k}
\end{array}\right]=M \cdot\left[\begin{array}{c}
\gamma \\
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{l-1}
\end{array}\right]
$$

$\rho(1), \ldots, \rho(t)$ are let $\rho:[k] \rightarrow[n]$ be the mapping from the the attributes the row index of M to the attribute index in $[n]$. policy is booking at
output sk $=M,\left\{\left(i, g^{s i} / t_{\rho(i)}\right)\right\}_{i \in[k]}$
$\operatorname{Decrypt}(s k, c t): \operatorname{Parse} s k=\left(M,\left\{\left(i, D_{i}\right)\right\}_{i \in[k]}\right)$

$$
c t=\left(\left\{\left(i, C_{i}\right)\right\}: \in S, Z\right)
$$

If S satisfies the policy, then there exists a vector $V \in \mathbb{Z}_{p}^{k}$ such that $V^{\top} M:[1,0, \ldots, 0]$ and $v_{i}=0$ for all $\rho(i) \in S$

Compute $Z / \prod_{i \in[t]} e\left(C_{\rho(i)}, D_{i}\right)^{v_{i}}$
[Note: treat $C_{\rho(i)}=g^{0}$ if $\rho(i) \notin s$]

Correctness: $\prod_{i \in(t)} e\left(C_{\rho(i)}, D_{i}\right)^{v_{i}}=\prod_{i \in[t]} e\left(g^{r t_{\rho(i)}}, g^{s_{i} / t_{\rho(i)}}\right)^{V_{i}}$

$$
\begin{aligned}
\sum S_{i} v_{i}=v^{\top} S=v^{\top} M \cdot\left[\begin{array}{c}
\gamma \\
\alpha_{1} \\
\vdots \\
\alpha_{h-1}
\end{array}\right] & =\prod_{i \in[t]} e(g, g)^{r s_{i} v_{i}}\left[\begin{array}{c}
\text { holds since } v_{i}=0 \\
\text { when } \rho(i) \notin s
\end{array}\right] \\
& =e(g, g)^{r v^{\top} M \cdot\left[\begin{array}{c}
\gamma \\
\alpha_{1} \\
\alpha_{l-1}
\end{array}\right]=e(g, g)^{\gamma r}=h^{r}}=\$=e[t]
\end{aligned}
$$

Security: We will show that ciphertext

$$
\left\{\left(i, T_{i}^{r}\right)\right\} i \in S, \quad h^{r} \cdot m
$$

is indistinguishable from

$$
\left\{\left(i, T_{i}^{r}\right)\right\}_{i \in S}, e(g, g)^{\alpha} \quad \text { where } \alpha \stackrel{R}{\leftarrow} \mathbb{Z}_{p}
$$

We will consider selective security where adversary has to choose S ahead of time (before seeing public key).
Hardness will rely on DBDH. $\quad e(g, g)^{a b c}$ or $e(g, g)^{\alpha}$
DBDH challenge: (g, A, B, C, T)

$$
g^{11} g^{b} g^{c}
$$

Reduction strategy:
Algorithm A chooses a set of attributes $S \subseteq[n]$
We need to simulate the public key mpk and secret keys for policies that S does not satisfy

Approach: Challenge ciphertext will use T

$$
\tau e(g, g)^{\gamma_{r}}
$$

If $T=e(g, g)^{a b c}$, we will need to map $a b c$ to γ_{r} and also publish $e(g, g)^{\gamma}$ in public key
Reduction will use c for the exponent r and $a b$ for the exponent γ. Then,

$$
\begin{aligned}
e(g, g)^{\gamma}=e(g, g)^{a b} & =e\left(g^{a}, g^{b}\right) \\
& =e(A, B)
\end{aligned}
$$

For the attribute-specific components, if $i \in S$, pick $t_{i} \stackrel{R}{\leftarrow} \mathbb{Z}_{p}$ and set $T_{i}=g^{t_{i}} น_{\text {must know }} t_{i}$

If $i \notin S$, will need to pick carefully
In the ciphertext, reduction can set $c_{i}=c^{t_{i}}=g^{t_{i} c}$
Suffices to construct secret keys. Problem: do not (and cannot know secret key $a b$)
Let $M \in \mathbb{Z}_{p}^{k \times l}$ be share-generation matrix associated with a policy.
Let $\rho:[k] \rightarrow[n]$ be labeling function.

Normally, we would compute

$$
\left[\begin{array}{c}
s_{1} \\
\vdots \\
s_{k}
\end{array}\right]=M \cdot\left[\begin{array}{c}
a b \\
\alpha_{1} \\
\vdots \\
\alpha_{l}
\end{array}\right]=\left[\begin{array}{c}
-m_{1}^{\top}- \\
\vdots \\
-m_{k}^{\top}
\end{array}\right]\left[\begin{array}{c}
a b \\
\alpha_{1} \\
\vdots \\
\alpha_{l}
\end{array}\right]
$$

and give out $D_{i}=g^{s i /} t_{\rho(i)}$ for each $i \in[k]$
Problem: Each s_{i} is a linear function of $a b$ and we do not have $g^{a b}$
Let $u=\left[\begin{array}{c}a b \\ \alpha_{1} \\ \vdots \\ \alpha_{l}\end{array}\right]$. Normally we compute $s=M u$.
We will instead write $u=b\left[\begin{array}{c}0 \\ \alpha_{1} \\ \vdots \\ \alpha_{l}\end{array}\right]+a b \cdot \hat{W}$

$$
z \text { : shave of } 0
$$

Same distribution as before! recall first component of w is 1 and ω is orthogonal to rows of M corresponding to attributes in S

$$
\left[m_{i}^{\top} \omega=0 \text { if } \rho(i j \in s]\right.
$$

Consider two possibilities for D_{i} :

1) if $\rho(i) \in S: s_{i}=m_{i}^{\top} u=b m_{i}^{\top} z$

$$
D_{i}=g^{s_{i} / t_{\rho(i)}}=g^{b m_{i}^{\top} z / t_{\rho(i)}}=B^{m_{i}^{\top} z / t_{\rho(i)}}
$$

reduction can compute since it knows M, z and $t_{\rho(i)}$
2) if

$$
\begin{aligned}
& f \rho(i) \notin S: s_{i}=m_{i}^{\top} u=b m_{i}^{\top} z+a b m_{i}^{\top} \omega \\
&=b\left(m_{i}^{\top} z+a m_{i}^{\top} \omega\right) \\
& S_{i}=g^{\left(t_{\rho}(i)\right.}=g\left(m_{i}^{\top} z+a m_{i}^{\top} \omega\right) / t_{\rho(i)}
\end{aligned}
$$

Seems to rely on knowledge of $a b$.
But... we have one degree of freedom. We can pick $t_{\rho(i)}$ strategically here!

Reduction does not need to know $t_{\rho(i)}$ since these are not present in challenge ciphertext. It just reeds to give out $T_{\rho(i)}=g^{t_{\rho(i)}}$ in public parameters.

Approach: choose T_{i} for $i \notin S$ to force cancellation,
Set $T_{i}:=B^{d_{i}}$ where $d_{i} \stackrel{R}{\leftarrow} \mathbb{Z}_{p}$ in public parameters.

$$
g^{11}
$$

Then, in the secret key for $g(i) \notin S$

$$
\begin{aligned}
D_{i}=g^{S_{i} / t_{\rho(i)}} & =g^{\left.b\left(m_{i}^{\top} z+a m_{i}^{\top} w\right) / t_{\rho(i)}\right)} \\
& =g^{m_{i}^{\top} z+a m_{i}^{\top} w / d_{i}} \\
& =g^{m_{i}^{\top} z / d i} A^{m_{i}^{\top} w / d_{i}}
\end{aligned}
$$

reduction car compute since it knows M, z, w, and d_{i}

