Next up: homomorphic signatures

Client
server

$$
\begin{aligned}
& \sigma \leftarrow S_{\text {ign }}(v k, x) \\
& x, \sigma \\
& y \leftarrow f(x) \\
& f \\
& y_{y, \sigma_{f, y}} \sigma_{y} \leftarrow E_{v a l}(f, x, \sigma)
\end{aligned}
$$

\downarrow
checks that $\sigma_{f, y}$ is a signature on y with respect to function f
τ can vies as signature on pair $(f, y) \longleftarrow$ Why not just on y alone?
Requirements: Unforgeability: Camot construct signature σ on (f, y) where $y \neq f(x)$.
(will formdize later)
Succinctness: Size of $\sigma_{f, y}$ should be $|y| \cdot p o l y(\lambda)$. In particular, should not depend on $|x|$ or $|f|$.
\rightarrow Otherwise trivial to construct! (Outputting $(\sigma, x, f(x)$) suffices).
Efficient verification: Can decompose verification algorithm as follows: \longrightarrow Also the case for FHE! companion f

$$
\begin{aligned}
& \text { - Preprocess }(v k, f) \rightarrow v k_{f} \\
& \text { - Verify }\left(v k_{f}, y, \sigma\right) \rightarrow 0 / 1 \\
& \text { as on authenticated data. } \\
& \text { challenger } \\
& \text { (uk, sk) } \leftarrow \text { Key Gen }\left(1^{\lambda}\right)
\end{aligned}
$$

Generates short function verification bey $v k_{f}\left(\left|v k_{f}\right|=p o l y(\lambda, d)\right)$ Runs in time poly $(\lambda, d, \mid y)$)

Homomorphic signatures allow computations on authenticated date.

Defining unforgeability: adversary

$$
\begin{aligned}
& \text { Onetime security }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Verity}\left(v k, y, \sigma_{f, y}\right)=1
\end{aligned}
$$

Construction: relies on similar homomorphic structure as GSW (for message space $\{0,1\}^{\ell}$)

- Key Gen $\left(1^{\lambda}\right)$: Set lattice parameters $n=n(\lambda), q=q(\lambda)$.

Sample $(A, T) \leftarrow \operatorname{Trap} G_{e n}(n, q) \quad\left[A \in \mathbb{Z}_{\xi}^{n \times m}, T \in\{0,1\}^{m \times t}\right]$
Sample $B_{1}, \ldots, B_{l} \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{n \times t} \quad \longrightarrow A T=G \in \mathbb{Z}_{q}^{n \times t} ; t=n\lceil\log q\rceil$
Output $v k=\left(A, B_{1}, \ldots, B_{l}\right), \quad s k=R$
$-\operatorname{Sign}(s k, x):$ Compute $R_{i} \leftarrow A^{-1}\left(B_{i}-x_{i} G\right)$ for $i \in[l]$ using T
In particular:

$$
\begin{aligned}
A\left[R_{1}|\cdots| R_{l}\right] & =\left[B_{1}-x_{1} G|\cdots| B_{l}-x_{l} G\right] \quad\left(R_{i} \in \mathbb{Z}_{q}^{m \times t}\right) \\
& =\left[B_{1}|\cdots| B_{l}\right]-x \otimes G
\end{aligned}
$$

Output $\sigma=\left(R_{1}, \ldots, R_{l}\right)$

- Verity $(v k, x, \sigma):$ Check that $\left\|R_{i}\right\| \leq B$ and that $A\left[R_{1}|\cdots| R_{l}\right] \stackrel{?}{=}\left[B_{1}|\cdots| B_{l}\right]-x \otimes G$
C bound bared on quality of trapdoor (lattice parameters)
signatures
verification beys
Homomorphic evaluation: $A\left[R_{1}|\cdots| R_{l}\right]=\left[B_{1}-x_{1} G|\cdots| B_{l}-x_{l} G\right]$
To derive a signature on the sum of two bits $\left(x_{i}+x_{j}\right)$: - news verification component associated with

$$
\left.\begin{array}{l}
R_{+}=R_{i}+R_{j} \\
B_{+}=B_{i}+B_{i}
\end{array}\right\} \text { verification: } A R_{+} \stackrel{?}{=} B_{+}^{L}-\left(x_{i}+x_{j}\right) G \quad \text { addition operation }
$$

$$
B_{+}=B_{i}+B_{j}
$$

$L_{\text {new signature }}$
To derive a signature on the product of two bits $\left(x_{i} x_{j}^{\prime}\right)$:

$$
\begin{gathered}
A R_{i}=B_{i}-x_{i} G \Rightarrow \text { desire something of the form } \\
A R_{j}=B_{j}-x_{j} G \\
\\
\downarrow
\end{gathered}
$$

function of R_{i}, R_{j} function of B_{i}, B_{j} - should not depend on x_{i}, x_{j} and x_{i}, x_{j} (verification algorithm does not know x)
(should be short)
function of signature, input function of public key only

$$
\left\|R_{x}\right\|_{\infty} \leqslant\left\|R_{j}\right\|_{\infty} \cdot t+\left\|R_{i}\right\|_{\infty} \quad \text { (this is } G S \omega \text { honomerphic multiplication) }
$$

Obsenation:

$$
\begin{array}{ll}
R_{t}=R_{i}+R_{j} & =\left[R_{i} \mid R_{j}\right]\left[\frac{I_{t}}{I_{t}}\right] \\
R_{x}=R_{i}\left(x_{j} I_{t}\right)+R_{j} G^{-1}\left(R_{i}\right) & =\left[R_{i} \mid R_{j}\right]\left[\frac{x_{j} I_{t}}{G^{-1}\left(R_{i}\right)}\right]
\end{array}
$$

$$
\tau_{R_{x}}
$$

Compose above operations to compute signature on $R_{f, x}$ on evaluation $f(x)$
By above analysis, multiplication scales noise by a factor of t so if f can be computed by a circuit of depth $d,\left\|R_{f, x}\right\|_{\infty} \leqslant t^{o(d)}$ this can also be written as

$$
B_{f} \leftarrow\left[B_{1}|\cdots| B_{l}\right] \cdot H_{f} \text { where }\left\|H_{f}\right\| \leq m^{o(d)}
$$

To verify a signature $R_{f, x}$ on $(f, z=f(x))$, verifier computes B_{f} from B_{1}, \ldots, B_{l} and checks that and depends only on $\left\|R_{f, x}\right\|_{\infty}$ sufficiently sriall (bound $\sim t^{o(a)}$)

$$
B_{1}, \ldots, B_{8}, f
$$

$$
A R_{f, x}=B_{f}-z \cdot G
$$

More generally:

$$
R_{f, x}=\left[R_{1}|\cdots| R_{l}\right] \cdot H_{f, x} \text { where } H_{f, x} \in \mathbb{Z}_{q}^{l t \times t} \text { and }\left\|R_{f, x}\right\|_{\infty} \leqslant t^{o(\alpha)}=(n \log ,)^{o(\alpha)}
$$

where d is the (multiplicative) depth of the circuit computing f
Now, if $A R_{i}=B_{i}-x_{i} G$, then from the above,

$$
A R_{f, x}=B_{f}-f(x) \cdot G
$$

where B_{f} is the matrix obtained by evaluating f on B_{1}, \ldots, B_{l}
This can be expanded as

$$
\begin{aligned}
A R_{f_{x} x}=A\left[R_{1}|\cdots| R_{l}\right] H_{f_{1} x} & =\left[B_{1}-x_{1} G|\cdots| B_{l}-x_{l} \cdot G\right] H_{f_{, x}} \\
& =B_{f}-f(x) \cdot G
\end{aligned}
$$

$$
\begin{aligned}
& \longrightarrow A R_{i}=B_{i}-x_{i} G \rightarrow B_{i}=A R_{i}+x_{i} G \\
& A R_{j} G^{-1}\left(B_{i}\right)=\left(B_{j}-x_{j} \cdot G\right) G^{-1}\left(B_{i}\right) \\
& =B_{j} G^{-1}\left(B_{i}\right)-x_{j} B_{i} \\
& =B_{j} G^{-1}\left(B_{i}\right)-A\left(x_{j} R_{i}\right)-x_{i} x_{j} G \\
& \Rightarrow A\left(R_{j} G^{-1}\left(B_{i}\right)+x_{j} R_{i}\right)=B_{j} G^{-1}\left(B_{i}\right)-x_{i} x_{j} \cdot G \\
& R_{x}=R_{j} G^{-1}\left(B_{i}\right)+x_{j} R_{i} \quad B_{x}=B_{j} G^{-1}\left(B_{i}\right)
\end{aligned}
$$

Decouple into two equations:

- Input-independent evaluation: $\left[B_{1}|\cdots| B_{l}\right] \cdot H_{f}=B_{f}$
- Input-dependent evaluation: $\left[B_{1}-x, G|\cdots| B_{l}-x_{l} G\right] H_{f, x}=B_{f}-f(x) \cdot G$

Will give us many advanced primitives!

Unforgeability: Will consider a weaker (selective) notion of security where the message that is signed is independent of the verification key [not difficult to get full adaptive security, but somewhat tedious] adversary challenger

Output 1 if $y \neq f(x)$ and $v k_{f} \longleftarrow \operatorname{Preproces}(v k, f)$

$$
\operatorname{Verify}\left(v_{f}, y, \sigma_{f, y}\right)=1
$$

Proof of unforgeabilit./.

$$
A<\mathbb{Z}_{q}^{n \times m}
$$

use $R-R^{*}$ as trapdoor for A to sample $A^{-1}(0)$

Observe: B correctly simulates verification key by LHL
suppose A succeeds: then $A R^{*}=B_{f}-y \cdot G$

$$
\begin{aligned}
& A R^{*}=B_{f}-y \cdot G \\
& A R=B_{f}-f(x) \cdot G
\end{aligned} \Rightarrow A\left(R-R^{*}\right)=\underbrace{f(x) \neq y \text { so } f(x)-y \in\{-1,1\}} \text { (x)-G}
$$

R is short since signature verifies $\leadsto R-R^{*}$ is a trapdoor for A R^{*} is short sine $R, H_{f, x}$ are small

Context-hiding for homomorphic signatures:

- In many settings, we also want the computed signature to hide information about the input to the computation

Alice

$$
\xrightarrow{x, \sigma_{x}} \underset{\underset{y=f(x), \sigma_{f, y}}{\longrightarrow}}{\stackrel{\text { Server }}{ }} \text { Bob }
$$

Bob wants to check signature on $y=f(x)$ but should not kern anything about x

- We will see one application of this type of property to (derignated-prover) NIZKs
statistically
We say a homomorphic signature scheme is contert-hiding if there exists an efficient simulator S where for all $(v k, s k) \leftarrow \operatorname{keyGen}\left(1^{\lambda}\right), \quad x \in\{0,1\}^{l}$, and $f:\{0,1\}^{l} \rightarrow\{0,1\}:$

$$
\{v k, \operatorname{Eval}(v k, f, \sigma)\} \stackrel{s}{\approx}\{v k, S(s k, v k, f, f(x))\}
$$

L simulator needs to simulate valid signatures so it needs to know the signing key; however, it does not know the input x, only the value $f(x)$
Turns out this is not difficult to achieve!

Current construction is not context-hiding:
this means signature revers no information about x other than $(f, f(x))$.

$$
R_{f, x}:=\left[R_{1}|\cdots| R_{l}\right] \cdot H_{f, x}
$$

\uparrow this is a function of x !

To achieve context-hiding, we reed a way to re-randomize a signature.
Suppose $\quad A R_{f, x}=B_{f}-y \cdot G \quad$ where $y \in\{0,1\}$
Evaluator knows y so it can compute the matrix

$$
V:=\left[A \mid B_{f}+(y-1) \cdot G\right]=\left[A \mid A R_{f, x}+(2 y-1) \cdot G\right]
$$

Now, since $y \in\{0,1\}, 2 y-1 \in\{-1,1\}$. Then $R_{f, x}$ is a trapdoor for V :

$$
V \cdot\left[\begin{array}{c}
-R_{f, x} \\
I
\end{array}\right]=(2 y-1) \cdot G=G \text { or }-G
$$

The public hey then includes a random target $z \& \mathbb{Z}_{b}^{n}$ and the signature is formed by sampling a short vector t such that $V t=z$:

$$
t \leftarrow V^{-1}(z) \text { using trapdoor }\left[\begin{array}{c}
-R_{f x} \\
I
\end{array}\right]
$$

To verify a signature, the verifier computes B_{f} from B_{1}, \ldots, B_{ℓ}, constructs V from the verification key and cheeses that $V_{t}=z$ and $\|t\|_{\alpha} \leq \beta$ where $\beta=(n \log f)^{o(d)}$ is the noise bound

$$
\text { is also }(n \log q)^{\text {od) }}
$$

Recap: homomorphic encryption

$$
p k: A=\left[\begin{array}{c}
\bar{A} \\
s^{\top} \bar{A}+e^{T}
\end{array}\right]
$$

$$
c t: \quad C=A R+\mu \cdot G
$$

ciphertext encryption randomness
homomorphic signatures

$$
v k: A \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{n \times m}
$$

signature: $A R=B-\mu \cdot G$
\uparrow
$\overbrace{\text { message }}$

GSW homomorphisms are homomorphic on both messages and on randomness

$$
\left(\begin{array}{c}
{\left[\begin{array}{c}
\left.C_{1}-x, G|\cdots| C_{l}-x_{l} \cdot G\right] \cdot H_{f, x}=C_{f}-f(x) \cdot G \\
\\
A\left[R_{1}|\cdots| R_{l}\right] H_{f, x}
\end{array}\right)\left[R_{1}|\cdots| R_{l}\right] H_{f, x}=R_{f, x}}
\end{array} \quad \begin{array}{c}
C_{f}=A R_{f, x}+f(x) \cdot G
\end{array}\right.
$$

$H E:$ ciphertext evaluation $\longrightarrow H S:$ signature evaluation
HS : verification

Another view: We can view GSW/homomorphic signatures as homomorphic commitment scheme:

$$
p p: A \in \mathbb{Z}_{q}^{n \times m}
$$

to commit to a message $x \in\{0,1\}$, sample $R \stackrel{R}{\leftarrow} D_{\mathbb{Z}, 5}^{m \times t}$ and output $C \leftarrow A R+x \cdot G$ to open a commitment to message μ, reveal R and check that
$C=A R+\mu \cdot G$ and $\|R\|_{\infty} \leqslant \beta$ (for some noise bound β)
Observe: commitment is just GSW ciphertext, so supports arbitrary computation

$$
\begin{aligned}
& C_{1}=A R_{1}+x_{1} \cdot G \\
& \vdots \\
& C_{l}=A R_{l}+x_{l} \cdot G
\end{aligned} \Rightarrow C_{f}=A R_{f, x}+f(x) \cdot G
$$

where $R_{f, x}=\left[R_{1}|\cdots| R_{l}\right] \cdot H_{f, x}$
verifier computes \square
C_{f} from C_{1}, \ldots, C_{e} can be used to open to $f(x)$

Then, the commitment scheme is extractable: given trapdoor information, can extract unique message for which an opening exists (if there is such a message).
If C can be opened to $\mu \in\{0,1\}$, then there exists short R such that

$$
\begin{aligned}
C=A R+\mu \cdot G \Rightarrow s^{\top} C & =s^{\top} A R+\mu \cdot s^{\top} G \quad(s=[-\bar{s} 11]) \\
& =e^{\top} R+\mu \cdot s^{\top} G
\end{aligned}
$$

$\approx \mu \cdot s^{T} G$ which suffices to recover μ
Extractable commitment \Rightarrow statistically binding
2. Suppore A is random matrix: $A \stackrel{R}{\mathbb{Z}_{q}^{n \times m}}$

Then, the commitment scheme is equisocable: given trapdoor information, can open a commitment to both 0 or 1 .
To see this, sample $(A, T) \longleftarrow \operatorname{Trapben}(n, q)$. Then A is statistically close to uniform. To generate opening for commitment C to message $\mu \in\{0,1\}$,

$$
R \leftarrow \text { Sample Are }(A, T, C-\mu G, s)
$$

This yields short R where

$$
A R=C-\mu G \Rightarrow C=A R+\mu \cdot G
$$

Equivocable commitment \Rightarrow statistically hiding

Succinct homomorphic commitments (i.e, functional commitments):
Commitment to x :

$$
\left.\begin{array}{rl}
C_{1} & =A R_{1}+x_{1} G \\
& \vdots \\
C_{l} & =A R_{l}+x_{l} G
\end{array}\right\} \text { grows with the input length } l
$$

Can we compress further? Yes, but will need a stronger assumption.
l-succinct SIS: SIS with respect to $A \not \mathbb{R}_{q}^{n \times m}$ holds even given a trapdoor for the related matrix

$$
B=\left[\begin{array}{llll|c}
A & & & & W_{1} \\
& A & & & \\
& & \ddots \\
W_{2} \\
& & & A & \\
& & & \\
& & & & \\
\end{array}\right] \quad \text { where } \quad W_{i} \leftarrow \mathbb{Z}_{q}^{n \times t}
$$

Note: When W_{i}^{\prime} 's are very wide $(t \sim \Omega(\ln \log q))$, then SIS $\Rightarrow l$-succinct SIS [challenge problem] For succinct commitments, we will set $t=m$.

