
Nextup
: homomorphic signatures

client server
-

Sign (vk
,
x)

X
,

o
->

f
- y

= f(x)

,of
,y Oy - Eval (f

,
x

,
o)

↓
checks that Ofy is a signature on y with respect to function of

&
can view as signature on pair (f

, y) < Why not just on y alone?

Requirements : Unforgeability : Cannot construct signature o on (f
, y) where y f(x).

(Will formalize later)

Succinctness: Size of Ofy should be (y). poly(). In particular ,
should not depend on I or If1.

↳ Otherwise trivial to construct ! (Outputting (0
,
x

, f(x)) suffices). depth of circuit

computing f
Efficientverification : Can decompose verification algorithm as follows : ↳ Also the case for FHE ! ↓

-

Preprocess (vk
,
f) - rkf Generates short function verification key Ukf ((kf) = poly(x,d))

-

Verify (vky , y ,
o) + 0/1 Runs in time poly(x,

d
, (y)

Homomorphic signatures allow computations on thenticated data.

Defining unforgeability : versary challenger---

(vk
,
sk) = Key Gen (1)

-
X
->

One-time security Ox = Sign (sk
,
x)

(generalizes to many-time) C
Of

--

f
, y , of, y
->

↓

Output 1 it y+f(x) and UK - Preprocess (ok
·
f)

Verity (rkf , y , fy) = 1

Construction : relies on similar homomorphic structure as GSW (for message space
30 ,13)

- keyGen(1) : Set lattice parameters n = a(x)
, g

= g(x) .

Sample (A , T) = TrapGen (n
, g) (A Em ,

TE 50
,1 mxt]

R nxt

Sample Bi
, ..., Be g

↳ AT =Get = = /logg

Output vk = (A
,
B>

,
.

. .,
Be)

,
Sk = R

-

Sign (sk
,
x) : Compute Ri = A(Bi-XiG) for it [l) using

T

In particular
:

A (R, 1 . . . 1 Re] = (B
,

-

x
,
6 1 ... /Be - x G] (R : Ex

*+)
l

= (B,
1 ... (Bl] - x & G

Output o = (R
, ....,

Re)
-

Verify (rk
,

x
,
0) : Check that I/Ril = B and that A[R , 1 ... / Re] =

[B. ... 1 Be3 - x & G

↑ bound based on quality of trapdoor (lattice parameters)



signatures verification keys
Homomorphic evaluation : A [R

,
1 ... / Re) = (B

.
- x . G 1 ... / Be-xeG]

To derive a signature on the sum of two bits (Xi + X; )
:

->
new verification component associated with

? LR+
= Ri + Rj Iverification : AR+= B+= (X:

+ X j) G addition operation
B+

= B=
+ Bj #

new signature

To derive a signature on the product of two bits (XiXj) :

ARi = Bi-XiG => desire something of the form

ARj =

Bj
-

xj6 ARx = Bx -

xixj. G

↓ ↓

function of Ri
,
R
j

function of Bi
,Bj

- should not depend on Xi , X;
and Xi

, Xj (verification algorithm does not know x)

(should be short)

-> ARi = Bi - xi6 -> Bi = ARi + Xi G

AR
j

6" (Bi) = (Bj -

xj
· 6) 6 (bi)

=

BjG (Bi) -

xjBi

= Bj6" (Bi) -

A(xjRi) - xiXj G
=> A(RjG" (Bi) + -jRi) = BjG (Bi) -

XiXj
· 6

-

Rx = RjG (Bi) +

xjR: B(Bi)

function of signature, input function of public key only
I/RxIlo IIRjIla - + + Rille (this is GSW homomorphic multiplication)

-R+ ~
can depend on Ri

, Rj , X

Observation : R+
= Ri + Rj = [R: /Rj) [El Small linear function of Ri and Rj

Rx = Ri(xj1t) + Rjb (Ri) = [Ri(Rj]) i)
L~

Rx

Compose above operations to compute signature on Rfx on evaluation f(x)

By above analysis , multiplication scales noise by a factor of t so ifI can be computed by a circuit of

depth &
, 1Rf/ <

0(a)
this can also be written as

- Bf = [B, 1 ... 1 B] · Hf where I/Hf/ = mol)
L

To verify a signature Rfx on (f
,

= f(x)
,

verifier computes By from B.. ..., Be and checks that and depends only on

IIRf x/I sufficiently small (bound focal B
....., Be

,

f

ARFx = By -

z . G

More generally :

O(d)

RF
.
x

= (R. 1 ... IRe] · Hax where Hyx <
**

and If y fo = (nlogy)
where d is the (multiplicative) depth of

the circuit computing &
Now

,
it ARi = Bi- XiG

,
then from the above,

ARf
,
x

= Bf - f(x) . G

where is the matrix obtained by evaluating f on BAR
Are

B
f

This can be expanded as

ARF = A [R
,

1 ... (Re]HX = (B
,
- x,

61 ... (Be - XeG]Hfx
=

By
- f(x) . 6



Decouple into two equations :

-

Input-independent evaluation :(B, 1 ... / Be]. Hy
= By

-

Input-dependent evaluation : (B
,
- x ,

G 1 ... 1 Be- xeG]Hf
,x

=

Bf
= f(x) . G I Will

giveasmanyde
a

Unforgeability : Will consider a weaker (selective) notion of security where the message that is signed is independent of the

verification key (not difficult to get full adaptive security ,
but somewhat tedious]

adversary challenger- ---

X
->

(vk
,
sk) = Key Gen (1)

Ox = Sign (sk
,
x)

-
Of
-

f
, y , of, y
->

output - it y + f(x) and
Vkf - Preprocess (rk

,
f)

Verity (rkf , y , fy) = 1

Proofof unforgeability.
Chaladversary lenger-

A

e
Ri . ...Reg
Bi = AR: + X; GA,Bie

**
-

↓

compute R = [R
,

1 ... IRe] · Hf
,
x

use R-R
*

as trapdoor for A to sample A"(0)

Observe: B correctly simulates verification key by LHL

suppose A succeeds : then AR
* =

By yC
=> A(R - R

* ) = (f(x) - y) . 6

AR =

By
- f(x). 6 --

f(x) + y so f(x)-

y
= 9 - 1

, 1

R is short since signature verifies
- R-R*

is a trapdoor for A

R
*

is short since R
, Hfx are small



Context-hiding for homomorphic signatures :

-In many settings ,
we also want the computed signature to hide information about the input to the computation

Alice Server Bob
- X

,
0+

-

->

)
, of

-

Bob wants to check signature on y
= f(x) but should not learn anything

about

- We will see one application of this type of property to (designated - prover) NICKS

statistically
V

We
say a homomorphic signature scheme is context-hiding if there exists an efficient simulator S where for all

(vk
,
sk) = KeyGen(1) , X t [0 ,19

,
and : 50 ,1 + 20 , 13 :

[uk
,
Eval(vk

,
f

,
o) 3 E &ul

,
S (sk

,
rk

,
f

,
f(x))]

↑ simulator needs to simulate valid signatures so it needs to

know the signing key ; however
,

it does n know the

input X
, only the value f(x)

Turns out this is not difficult to achieve !
↳

this means signature reveals no information about y

Current construction is not context-hiding : other than (f
,
f(x)).

Rf
,
x

: = (R
.

1 . . . IRe] · Hfx
& this is a function of X !

To achieve context-hiding ,
we need a way

to re-randomize a signature.

Suppose ARF = BJ
-

y
. G where E 40

, 13

Evaluator knowso so it can compute the matrix

V : = (A /Bj + (y- 1) . G] = [A/ARf + (2y -1) · 6]

Now
,

sinceE 20
, 13 , 2y-1 E5-1, 13. Then Rfx is a trapdoor for V :

v . [-R) = (2y - 1) - 6 = 6 or C

The public key then includes a random target and the signature is formed by sampling a short rector

t such that Vt = z :

-> > V (2) using trapdoor [x]
To verify a signature ,

the verifier computes By from B, ..., Be ,
constructs V from the verification key and checks that

V = z and Itlly = B where B
= (nlogg)0(d) is the noice bound

->
quality of trapdoor is 111-* ]))

,

which is (nlogg)0(a)
is also (n log g(0(d)

So norm bound



Recap : homomorphicencryption homomorphic signatures

nxM

pl : A = 1st + et] vk : A
y target matrix (in rk)

L

c+: C = AR +

M
. G signature : AR = B-

M
. G

T E &I ↑ message ↑ L

message
ciphertext encryption randomness signature

GSW homomorphisms are homomorphic on both messages and on randomness

C
, ..., Ce

,
f + Cf

~ homomorphism on

(c
.

- x
,
6 1 . . - 1(p- +e

-6) . H
,
x

= Cf - f(x)6 messageS
.

1)

/ (
= ARf

,x
+ f(x) . G

A TR . 1... /Re)Hfx -t TR . l ... IR]HX = R ↑
homomorphism on randomness

HE : ciphertext evaluation HS : signature evaluation

HS : Verification



Another view : We can view GSW/homomorphic signatures as homomorphic commitment scheme :

pp
: A E

*m

to commit to a message X 40, 13
, sample RD** and Output =AR +X. G

to
open a commitment to message m,

reveal R and check that

= AR +
M

. G and IRI = B (for some noice bound pp)
Observe : commitment is just GSW ciphertext ,

so supports arbitrary computation-

X 1C
,

= AR ,
+ M.. G

-

: i -> C = ARf
,
x

+ f(x) 6

Ce = ARe +Xe. G M

/ where Rf
,x

= <R
.

1 . . . 1 Re7 · Hex
verifier computes

C from
.. Ce
*

car be used to
open

to f(x)

Two possible "modes" : 1 . Suppose A is an LWE matrix : A = Estet)
.

Ther
,

the commitment scheme is extractable : given trapdoor information
,

can extract unique

message for which an opening exists (if there is such a message).

IfC can be opened to
pe 40, 13

,
then there exists short R such that

C = AR +

m
. 6 = sTC = STAR + M

. STG (s = [ -5/1))
= eTR + p

- StG

M . STG which suffices to recover fu
#xtractable commitment => statistically binding

xm

2. Suppose A is random matrix : A g
Then

,
the commitment scheme is equivocable: given trapdoor information

,
can open a commitment to

both 0 or
1

.

To see this
, sample (A

,
T) - TrapGen (n , g). Then A is statistically close to uniform.

To generate opening for commitment C to messageE 50
, 13,

R - SamplePre (A
,
T

,
C -MG, s)

This yields short R where

AR = C-MG E C = AR + M
. G

Equivocable commitment => statistically hiding

Succinct homomorphic commitments (i . e
.,

functional commitments) :

Commitment to X : C
,

= AR, + X ,
6

i 3 grows
with the input length I

C = ARe + XeG

Can we compress further ? Yes
,

but will need a stronger assumption.

1-succinct SIS : SIS with respect to A **

holds even given a or for the related matrix

B =

*
A

...
A/ where With↑

Note : WhenWis are very wide (t-(nlogg)) ,
then SIS => 1-succinct SIS [challenge problem >

For succinct commitments
,

we will set t = m.


