Now, we will see how to use LWE to obtain a key agreement protoco)

We start with an anortized version of Reger's PKE scheme where each ciphertext encrypts a <u>vector</u> of bits <u>Vanilla Reger</u>: encryption of single bit $\mu \in \{0,1\}$ is a vector $c = Ar + \mu \cdot \lfloor \frac{4}{2} \rceil \cdot \lfloor \frac{0}{1} \rceil$ Encrypting multiple bits: May seen wasteful to use a vector to encrypt a <u>single</u> bit. We can consider a simple variant of Reger encryption where we rever A to encrypt multiple bits: <u>Setup(1ⁿ, 1^k)</u>: sample $A \stackrel{a}{=} \mathbb{Z}_{1}^{non}$ $S \stackrel{a}{=} \mathbb{Z}_{1}^{nvL}$ $B^{T} \in S^{T}A + E^{T} \in \mathbb{Z}_{1}^{kon}$ sk: S <u>Setup(1ⁿ, 1^k)</u>: sample $r \stackrel{a}{=} 1_{0}r_{1}^{N}$ $B = compt(pk, \mu \in 10r_{1}^{N})$: sample $r \stackrel{a}{=} 1_{0}r_{1}^{N}$ unitable concentrated together $<u>Encrypt(pk, \mu \in 10r_{1}^{N})</u>: sample <math>r \stackrel{a}{=} 1_{0}r_{1}^{N}$ unitable concentrated together $<u>Encrypt(sk, ct)</u>: output <math>Lct_{2} \cdot S^{T}ct_{1}|_{2}$ <u>Convectores</u>: As before: $ct_{2} - S^{T}ct_{1} = B^{T}r + \mu \cdot \lfloor \frac{1}{2} \rfloor$ <u>Security</u>: As before: by Live, $(A, S^{T}A + E^{T}) \stackrel{a}{\sim} (A, R)$ where $A \stackrel{a}{=} \mathbb{Z}_{1}^{non}$, $S \stackrel{a}{=} \mathbb{Z}_{1}^{nk}$, $E \in \chi^{nvA}$, $R \stackrel{a}{=} \mathbb{Z}_{1}^{kn}$ <u>Convectores</u>: how the convertice of a compared and and again for each row of S (and conversionly row of S^{T}A + E^{T}). Plite b and the tild of the tild of the tild of the compared of a compared by conversion of $S^{T}A + E^{T}$.

Public keys are large ; if m = n log g, then public key has size n²log g - for instance : n ~ 600, g ~ 2¹² (~ 550 KB) L> Can shrink public keys to n² (Will kave as exercise; hint: sample secret key from error distribution) L> Can shrink further using ring LWE (O(n) public key size)

Lattice-based key exchange. Recall Diffie-Hellman:

