
Now
, we will see how to use LWE to obtain a key agreement protocol

We start with an amortized version of Regev's PKE scheme where each ciphertext encrypts a rector of bits

n

nillaRegev : encryption of single bit ME50 , 13 is a vector c = Ar+. (7
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Encrypting multiple bits : May seem wasteful to use a vector to encrypt a gle bit
.

We can consider a simple variant of

Reger encryption where we use A to encrypt multiple bits:
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↑ in particular, apply a hybrid argument and argue for each row of S land corresponding row of STA + ET)

Public keys are large : if m = nlogg ,

then public key has size logg - for instance : n ~ 600
, -2 (2550KB)

↳> can shrink public keys ton2 (will leave as exercise ; hint : sample secret key from error distribution

↳ Can shrink further using ring LWE (O(n) public key size)

Lattice-based key exchange .
Recall Diffie-Hellman :
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Correctness : S[Be = STCAS+ En) = STAS2+sEzGod o from error distribution
,

so product is small
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This holds as long as S.Bz and B.S2 are far from a "rounding boundary"

For simplicity ,
consider case where g is a power

of two

holds as long as at least one element in

Case for T=2 By LWE : (STATE & U where Use - each row of (STA + E
,T) is invertible

,
which

- round to 1
holds with prob · /negl(n) for random matrix

I - Consider
any component of B,S2 = (S., A + E)) Sc

L
A

& < -Hir
nu espe

sa
↳ Component is computationally indistinguishable from Uniform (g) (but components might be correlated)- & round to O

V &InB2 ↓
& - Rounding error occurs only if BS2 falls into a rounding boundary

- ↑ round to 0 Probability that individual component of Bish fells into boundary region is InB B

&

L nurIwirkuD
I < By union bound over all kika components

G
round to 3

Pr[/B,S2) TBS2-ES = Bik
4 G

Similar calculation shows that

Pr[(SB2) (SYBe-SEn(z] kn

If g2 : nB
> k .2

,
then TBS2) = BS2-ESule = STASI

= TS[B2-STEnJ = TSTB22 and Alice
,
Bob agree on the shared key

Can reduce error rates via a key reconciliation mechanism (See FrodoEM for details]
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Thus
,

under LWE
,

distribution of shared key is computationally close to uniform random even given the public messages.


