Now, we will see how to use LWE to obtain a bey agreement protocol

We start with an amortized version of Regev's PKE scheme where each ciphertext encrypts a vector of bits
Vanilla Regev: encryption of single bit $\mu \in\{0,1\}$ is a vector $c=A r+\mu \cdot\left[\begin{array}{l}\frac{q}{2} \\ 2\end{array}\right] \cdot\left[\frac{0^{n}}{1}\right]$
Encrypting multiple bits: May seem wasteful to use a vector to encrypt a single bit. We can consider a simple variant of Reges encryption where we reuse A to encrypt multiple bits:
$\operatorname{Setup}\left(1^{\lambda}, 1^{l}\right)$: sample $A \stackrel{R}{\leftrightarrows} \mathbb{Z}_{q}^{n \times m}$
$S \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{n \times l}$
$p k:\left(A, B^{\top}\right)$ amortized Refer

$$
E \stackrel{R}{\leftarrow} x^{b \times \ell}
$$

sk: S

I secret hes concatenated together
Encrypt (pk, $\left.\mu \in\{0,1\}^{\ell}\right):$ sample $r \stackrel{R}{\rightleftarrows}\{0,1\}^{m}$
output (Ar, $\left.B^{\top} r+\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor\right)$
Decrypt (sk ,ct): output $\left.L c t_{2}-S^{\top} c t_{1}\right\rangle_{2}$
Correctness: As before: $c t_{2}-S^{\top} c t_{1}=B^{\top} r+\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor-S^{\top} A r=E^{\top} r+\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor$
Security: As before: by $\operatorname{LWE},\left(A, S^{\top} A+E^{\top}\right) \approx(A, R)$ where $A \leftarrow \mathbb{Z}_{q}^{n \times m}, S S^{R} \mathbb{Z}_{q}^{n \times l}, E \leftarrow X^{m \times l}, R \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{l \times m}$
τ in particular, apply a hybrid argument and argue for each row of S (and corresponding row of $S^{\top} A+E^{\top}$)
Public keys are large: if $m=n \log 8$, then public key has size $n^{2} \log q$ - for instance: $n \sim 600, q \sim 2^{12} \quad$ ($\sim 550 \mathrm{~KB}$)
\rightarrow Can shrink public keys to $n^{2} \quad$ (will lave as exercise; hint: sample secret key from error distribution)
\rightarrow Can shrink further using ring LWE ($O(n)$ public key size)

Lattice-bared key exchange. Recall Diffie-Hellman:

$$
A \leftarrow \mathbb{Z}_{b}^{n \times n}
$$

$$
S_{1}, E_{1} \leftarrow x^{6 \times k_{1}}
$$

$$
B_{1}^{\top} \leftarrow S_{1}^{\top} A+E_{1}^{\top}
$$

in practice: A is very lane (but randan)
\rightarrow derive from a PRG and A, B_{1} Alice sends PRG seed $\begin{array}{ll}S_{2}, E_{2} \leftarrow x^{n \times k_{2}} \\ B_{2} \leftarrow A S_{2}+E_{2} & \text { (relies on random orate) } \\ \text { tewnistic }\end{array}$
compute $C \leftarrow\left[S_{1}^{\top} B_{2}\right]_{2}{ }^{\top}$ compute $C \leftarrow\left[B_{1}^{\top} S_{2}\right]_{2}{ }^{\top}$

Main idea: exprentiation \rightarrow noisy linear combination

Correctness: $\quad S_{1}^{\top} B_{2}=S_{1}^{\top}\left(A S_{2}+E_{2}\right)=S_{1}^{\top} A S_{2}+\underline{S_{1}^{\top} E_{2} \quad(\bmod q)}$
\longrightarrow both sampled from error distribution, so product is small if errors are B-bounded, then $\left\|S_{1}^{\top} E_{2}\right\|_{\infty} \leq n \cdot B^{2}$

$$
B_{1}^{\top} S_{2}=\left(S_{1}^{\top} A+E_{1}^{\top}\right) S_{2}=S_{1}^{\top} A S_{2}+E_{1}^{\top} S_{2} \quad\left(\bmod q_{q}\right)
$$

\longmapsto also bounded by $\left\|E_{1} S_{2}\right\|_{\infty} \leq n B^{2}$
Hope: $\left\lceil S_{1}^{\top} B_{2}\right\rfloor=\left\lceil B_{1}^{\top} S_{2}\right\rceil$
This holds as long as $S_{1}^{\top} B_{2}$ and $B_{1}^{\top} S_{2}$ are far from a "rounding boundary"

For simplè̈ty, consider cave where q is a power of two

Case for $T=2$

By LWE: $\quad\left(S_{1}^{\top} A+E_{1}^{\top}\right) \stackrel{\stackrel{C}{~}}{\approx} U$ where $U \stackrel{R}{\mathbb{R}} \mathbb{Z}_{q}^{k_{1} \times n}$ Consider any component of $B_{1} S_{2}=\left(S_{1}^{\top} A+E_{1}^{\top}\right) S_{2}$ \rightarrow Component is computationally indistinguishable from Uniform $\left(T_{q}\right)$ (but components might be correlated) Roweling error occurs only if \bar{B}, S_{2} falls into a rounding boundary Probability that individual component of $B_{1}^{T} S_{2}$ falls into boundary region is $\leq \frac{2^{T} \cdot 2 n B^{2}}{q}=\frac{2^{T+1} n B^{2}}{q}$ By union bound over all $k_{1} k_{2}$ components

$$
\operatorname{Pr}\left[\int B_{1}^{\top} S_{2} J_{2}^{\top} \neq\left\lceil B_{1}^{\top} S_{2}-E_{1} S_{2} 7_{\eta}\right] \leqslant \frac{2^{T+1} n B^{2} k_{1} k_{2}}{q}\right.
$$

Similar calculation shows that

$$
\operatorname{Pr}\left[\left\{s_{1}^{\top} B_{2}\right]_{2^{\top}} \neq\left[S_{1}^{\top} B_{2}-s_{1}^{\top} E_{2}\right]_{2^{\top}}\right] \leqslant \frac{2^{T+1} n B^{2} k_{1} k_{2}}{q}
$$

If $q \gg 2^{T+1} \cdot n B^{2} k, k_{2}$, then $\left\lceil B_{1}^{\top} S_{2}\right\rfloor_{2}^{\top}=\left\lceil B_{1}^{\top} S_{2}-E_{1} S_{2}\right]_{2}{ }^{\top}=\left\{S_{1}^{\top} A S_{2}\right]_{2}^{\top}$

$$
=\left\lceil S_{1}^{\top} B_{2}-S_{1}^{\top} E_{2}\right\rfloor_{2}^{\top}=\left\lceil S_{1}^{\top} B_{2} \int_{2}^{\top}\right. \text { and Alice, Bob agree on the shaved bey }
$$

Can reduce error rates via a key reconciliation mechanism [See FrodoKEM for details]
Security (against passive eavesdroppers): $(\overbrace{A, B_{1}^{\top}=S_{1}^{\top} A+E_{1}^{\top}, B_{2}=A S_{2}+E_{2}}^{\text {public messages }}, \overbrace{\left\lceil S_{1}^{\top} B_{2} J_{2}^{\top}\right)}^{\text {shared by }}$

$$
\begin{aligned}
& \stackrel{\approx}{\approx}(L W E) \\
& \left(A, B_{1}^{\top}=s_{1}^{\top} A+E^{\top}, u_{2},\left\lceil S_{1}^{\top} u_{2}\right\rfloor_{2}^{\top}\right) \text { where } u_{2}^{R} \mathbb{Z}_{b}^{n \times k_{2}} \\
& \stackrel{s}{\approx}\left(\text { as long as } q>2^{T+1} \cdot B \cdot n k_{1}\right. \text {) } \\
& \left(A, B_{1}^{\top}=S_{1}^{\top} A+E^{\top}, U_{2},\left[S_{1}^{\top} U_{2}+\tilde{E}^{\top}\right]_{2^{\top}}\right) \text { where } \tilde{E} \leftarrow x^{n \times k_{1}} \\
& \text { え (LWE and } q \text { is power of two) } \\
& \left(A, u_{1}, u_{2}, u_{3}\right) \text { where } u_{1} \stackrel{R}{R}_{\mathbb{Z}_{1}^{k_{1} \times n}}, u_{2} \leftarrow \mathbb{Z}_{6}^{n \times k_{2}}, u_{3} \stackrel{R}{\mathbb{R}} \mathbb{Z}_{2}^{k_{1} \times k_{2}} \\
& \underset{\sim}{\approx}(L W E) \\
& \left(A, B_{1}^{\top}=S_{1}^{\top} A+E_{1}^{\top}, \quad B_{2}=A S_{2}+E_{2}, U_{3}\right)
\end{aligned}
$$

Thus, under LWE, distribution of shared key is computationally close to uniform random even given the public messages.

