Summary so for: - The SIS problem can be used to realize many symmetric primitives such as OWFs, CRHFs, and signatures

- Useful trick: "Concealing" a trapdoor (egg., short matrix/busis) within a random-looking one - common theme in lattice-based cryptography.

For public-key primitives, we will rely on a very similar assumption: learning with errors (LWE), which can also be viewed as a "dual" of SIS. We introuce the assumption below: errors are typically much smaller than of
Learning with Errors (LWE): The LWE problem is defined with respect to lattice parameters n, m, q, x, where X is an error distribution over \mathbb{Z}_{q} (oftentimes, this is a discrete Gaussian distribution over \mathbb{Z}_{q}). The LWEn,m,qx assumption states that for a random choice $A \leftarrow \mathbb{Z}_{q}^{n+m} s \leftarrow \mathbb{Z}_{q}^{n}$, $e \leftarrow X^{m}$, the following two distributions are computational indistinguishable:

$$
\left(A, s^{\top} A+e^{\top}\right) \approx(A, r)
$$

where $r \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{m}$.
In words, the LWE assumption says that noisy linear combinations of a secret rector over $\mathbb{Z}_{\hat{q}}^{n}$ looks indistinguishable from random.

A few notes/obsersations on $\angle W E$:

- Typically, m is sufficiently large so that the LWE secret s is uniquely determined.
- Without the error terms, this problem is easy for $n>n$: simply use Gaussian elimination to solve for s
- Observe that if SIS is easy, then LWE is easy. Namely, if the adversary can find a short $u \in \mathbb{Z}_{q}^{m}$ such that $A_{u}=0$, then, the adversary can compute

$$
\left(s^{\top} A+e^{\top}\right) u=s^{\top} A u+e^{\top} u=e^{\top} u \Rightarrow\left\|e^{\top} u\right\| \leqslant m \cdot\|e\| \cdot\|u\|
$$

τ this is small (compared to q)
$r^{\top} u$ will be uniform over \mathbb{Z}_{q}, are unlikely to be small
LDE in "normal form"

- We can also choose the LWE secret from the error distribution (so it is short) - can be useful for both efficiency and for functionality (this is at least as hard as LWE with secrets drawn from any distribution, including the uniform one)
- Can also consider search vs. decision versions of the problem (ie., search LWE says given ($A, s^{\top} A+e^{\top}$), find s). There an search-to-decision reductions for LWE.

LWE as a lattice problem: The search version of LWE essentially asks one to find s given $s^{\top} A+e^{\top}$. This can be viewed as solving the "bounded-distance decoding" (BDD) problem on the q-arr lattice

$$
\mathcal{L}\left(A^{\top}\right)=\left\{s \in \mathbb{Z}_{q}^{n}: A^{\top} s\right\}+q \mathbb{Z}^{n}
$$

ie., given a point that is close to a lattice dement $s \in \mathcal{L}\left(A^{\top}\right)$, find the point s
Connections to worst-case hardness: Regev showed that for any $m=$ poly (n) and modulus $q<2^{p l y(n)}$ and for a discrete Gaussian noise distribution (with values bounded by β), solving LWEn,m,p,x is as hard as quantumly solving Gap SP γ on arbitrary n-dimensional lattices with approximation factor $\gamma=\tilde{0}(n \cdot q / \beta)$
\rightarrow Long sequence of subsequent works have shown classical reductions to worst-case lattice problems (for suitable instantiations of the parameters)

Symmetric encryption from LWE (for binary-valued messages))
Setup ($\left.1^{\lambda}\right):$ Sample $s^{\circledR} \mathbb{Z}_{q}^{n}$.

$\operatorname{Decxypt}(s, c t):$ Output $\frac{\left\lfloor c t_{2}-s^{\top} c t_{1}\right]_{2}}{\text { "rounding }} \begin{gathered}\text { Operation" }\end{gathered}$
Visually:

Correctness:

$$
\begin{aligned}
c t_{2}-s^{\top} c t_{1} & =s^{\top} a+e+\mu \cdot\left\lfloor\frac{9}{2}\right\rfloor-s^{\top} a \\
& =\mu \cdot\left\lfloor\frac{9}{2}\right\rfloor+e
\end{aligned}
$$

if $|e|<\frac{g}{4}$, then decryption recovers the correct bit
Security: By the LDE assumption, ($\left.a, S_{T a t e}\right) \approx(a, r)$ where $r^{*} \mathbb{Z}_{q}$. Thus,

Obreve: this encryption scheme is additively homomosphic (over $\left.\mathbb{Z}_{2}\right)$:

$$
\begin{aligned}
& \left(a_{1}, s^{\top} a_{1}+e_{1}+\mu_{1} \cdot\left\lfloor\frac{9}{2}\right\rfloor\right) \\
& \left(a_{2}, s^{\top} a_{2}+e_{2}+\mu_{2} \cdot\left\lfloor\frac{1}{2}\right\rfloor\right)
\end{aligned} \Rightarrow\left(a_{1}+a_{2}, s^{\top}\left(a_{1}+a_{2}\right)+\left(e_{1}+e_{2}\right)+\left(\mu_{1}+\mu_{2}\right) \cdot\left\lfloor\frac{q}{2}\right\rfloor\right)
$$

decryption then computes

$$
\left(\mu_{1}+\mu_{2}\right) \cdot\left\lfloor\frac{q}{2}\right\rfloor+e_{1}+e_{2}
$$

which when rounded yields $\mu_{1}+\mu_{2}(\bmod 2)$ provided that $\left|e_{1}+e_{2}+1\right|<\frac{9}{4}$
Idea: We will rely on the LHL. We will induce encryptions of 0 in the public key and refresh ciplertexts by taking a subset sum of encryptions of 0 :

Correctness: $c t_{2}-s^{\top} c t_{1}=b^{\top} r+\mu \cdot\left\lfloor\frac{9}{2}\right\rfloor-s^{\top} A r=s^{\top} A r+e^{\top} r+\mu \cdot\left\lfloor\frac{9}{2}\right\rfloor-s^{\top} A r$

$$
=\mu \cdot\left\lfloor\frac{9}{2}\right\rfloor+e^{\top} r
$$

if $\left|e^{T} r\right|<\frac{9}{4}$, then decryption succeeds (since e is small and r is binary, $e^{i} r$ is not large : $\left|e^{T} r\right|<m\|l\|\|r\|=m\|e\|$)
Security: Follows by LWE and LHL:
Hypo: Real public key
$H_{y} b_{1}$: Uniformly random public key (egg. $b \leftarrow \mathbb{Z}_{q}^{m}$)
Hyp b_{2} : Uniformly random ciphertecest (e.g.1 $c t=(u, t)$ where $u \leftarrow \mathbb{Z}_{\hat{q}}^{m}$ and $\left.t \stackrel{\&}{\approx}\{0,1\}\right) \geq$ LL: $(\bar{A}, \bar{A} r) \stackrel{s}{\approx}(\bar{A}, u)$ where $\bar{A}=\left[\frac{A}{b^{*}}\right] \leftrightarrow \mathbb{Z}_{b}^{(n+1) m}$ $r \leftarrow\{0,1\}^{m}$, and $u \&\left\{\left\{_{0}, 1\right\}\right.$

