Attribute-based encryption (ABE): allow fine-graired access control to encrypted data


ABE Schema:
$-\operatorname{Setup}\left(1^{\lambda}\right) \rightarrow m p k, m s k$

- Key Gen (mss, f) $\rightarrow \mathrm{sk}_{f}$
- Encrypt (mp, $x, \mu) \rightarrow c t_{x, \mu}$
$-\operatorname{Decrypt}\left(s k_{f}, c t_{x, \mu}\right) \rightarrow \mu$ or $\perp$
Correct ness: for all functions $f$, attributes $x$ where $f(x)=1$, and all messages $\mu$ :

Semantic Security:

$A_{n} A B E$ scheme is semantically secure if for all efficient and admissible adversaries $A$,

$$
\left|\operatorname{Pr}\left[b^{\prime}=1 \mid b=0\right]-\operatorname{Pr}\left[b^{\prime}=1 \mid b=1\right]\right| \leqslant \operatorname{neg} \mid(\lambda)
$$

Starting point : dual Regev encryption

$$
\begin{aligned}
\text { Key } \operatorname{Gen}\left(1^{\lambda}\right): & A \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{n \times m} \\
& r \stackrel{R}{\leftarrow}\{0,1\}^{m} \\
& t \leftarrow A r \in \mathbb{Z}_{q}^{n} \\
p k:(A, t) & s k: r
\end{aligned}
$$

Encrypt ( $p k, \mu$ ): Sample $s^{R} \not \mathbb{Z}_{q}^{n}, e \leftarrow x^{m}, e^{\prime} \leftarrow x$
Output $c t=\left(s^{\top} A+e^{\top}, s^{\top} t+e^{\prime}+\mu \cdot\left\lfloor\frac{q}{2} 7\right)\right.$

$$
\begin{array}{ll}
\text { Decrypt }(s k, c t): & \text { Output } c t=\left(s^{\top} A+e\right. \\
\text { Output }\left[c t_{1}-c t_{0} r\right]_{2}
\end{array}
$$

Correctress:

$$
\begin{aligned}
& c t_{1}-c t_{0} r=s^{\top} t+e^{\prime}+\mu \cdot\left\lfloor\frac{q}{2}\right\rceil-s^{\top} A r-e^{\top} r \\
&=\mu \cdot\left\lfloor\frac{q}{2}\right\rceil+\underbrace{e^{\prime}-e^{\top} r}_{\text {small }} \quad \text { if } x \text { is } B \text {-bounded, them } \\
&\left|e^{\prime}-e^{\top} r\right| \leqslant B(m+1)
\end{aligned}
$$

correct as long as $B(m+1) \leqslant \frac{9}{4}$

Security: Follows from $L H L$ and $L W E$ : My bo: real semantic security game
Hybl : sample $t \in \mathbb{Z}_{q}^{n}$ in the master public key
$H_{y} b_{2}$ : sample $c t_{0} \stackrel{R}{\leftrightarrows} \mathbb{Z}_{q}^{m}, c t_{1} \stackrel{R}{\leftrightarrows} \mathbb{Z}_{q}$

Comparison of primal vs. dual Reger:
primal Regev
$p k: A, b^{\top} \leftarrow s^{\top} A+e^{\top}$
$c t: A r, b^{\top} r+\mu \cdot\left[\begin{array}{l}q \\ 2 \\ \hline\end{array}\right.$
"interchanging"
pk and ct dual Regev secret hey is a short preimage of public target vector $b$ $p k: A, b \leftarrow A r$ with respect to $A$
$c t: S^{\top} A+e^{\top} \quad \longrightarrow$ will refer to this as dual Reger with

$$
s^{\top} b+e^{\prime}+\mu \cdot\left[\frac{q}{2}\right]
$$

2 LHL (when $m=\Omega(n$ log $g))$
2 LW E

Attribute-based encryption from LWE: will "flip" the convention (decrypt when $f(x)=0$, not when $f(x)=1$ ).
Idea: suppose $x \in\{0,1\}^{\ell}$
public key will contain matrices $A \in \mathbb{Z}_{b}^{n \times m}, B=\left[B_{1}|\cdots| B_{l}\right] \in \mathbb{Z}_{b}^{n \times l m}$ to encode an attribute $x \in\{0,1\}^{\ell}$ :

$$
B-x \otimes G=\left[B_{1}-x_{1} G|\cdots| B_{l}-x_{l} G\right] \quad \text { only depends on function } f \text { (and } B_{1}, \ldots, B_{l} \text { ) }
$$

then, to evaluate $f$ on encodings: $\downarrow$ (independent of $x$ - useful for key-generation)

$$
\left[B_{1}-x_{1} G|\cdots| B_{e}-x_{l} \cdot G\right] \cdot H_{f, x}=B_{f}-f(x) \cdot G
$$

when $f(x)=0$ (can decrypt), we can recover $B_{f}$ from $\left[B_{1}-x, G|\cdots| B_{l}-x_{l} \cdot G\right]$
ciphertext will be a dual Regev ciphertext with respect to $\left[A \mid B_{f}\right]$ :
$m p k$ includes random vector $u \in \mathbb{Z}_{q}^{\sim}$ will reed to be careful with this distribution in security post ciphertext is $s^{\top} A+e^{\top}$

$$
\begin{aligned}
& s^{\top}\left[B_{1}-x_{1} G|\ldots| B_{l}-x_{l} \cdot G\right]+\tilde{e}^{\top} \\
& s^{\top} u+e^{\prime}+\mu \cdot\left[\frac{1}{2}\right] \\
& \text { a function } f \text { will be } \\
& z_{f} \text { such that }\left[A \mid B_{f}\right] z_{f}=u \\
& \text { d using trapdoor for } A)] \\
& {\left[A \mid B_{f}\right] \text { only }}
\end{aligned}
$$

$\xrightarrow{\mathrm{H}_{f, x}}$

$$
\begin{aligned}
& S^{\top}\left(B_{f}-f(x) \cdot G\right)+\tilde{e}^{\top} H_{f_{1} x} \\
&=s^{\top} B_{f}+\tilde{e}^{\top} H_{f_{, x}} \quad \text { when } f(x)=0
\end{aligned}
$$

secret bey to a function $f$ will be short vector $z_{f}$ such that $\left[A \mid B_{f}\right] z_{f}=u$ (can be sampled using trapdoor for $A$ )
$\mapsto$ decrypter can compute

$$
S^{T}\left[A \mid B_{f}\right]+\text { error }
$$

multiply by $z_{f}$ yields
depends on $f$ and not $t$ secret key for a function $f$ is a "recoding on input $x$ key": translates an LWE instance with respect to $\left[A \mid B_{f}\right]$ to LWE instance with respect to $t:\left[A \mid B_{f}\right] \cdot z_{f}=u$

Setup $\left(1^{\lambda}\right)$ : Define lattice parameters $n=n(\lambda), q=q(\lambda), m=\theta(n \log g), x=x(\lambda), \sigma=\sigma(\lambda)$
Sample $(A, T) \leftarrow \operatorname{Trap} b_{\text {en }}(n, \delta) \quad A \in \mathbb{Z}_{\delta}^{\text {nom }}$

$$
B \stackrel{\&}{\leftarrow} \mathbb{Z}_{8}^{n \times \ln m}
$$

$\uparrow \quad \uparrow$

$$
u \Leftrightarrow \mathbb{Z}_{q}^{n}
$$

Output mp $=(A, B, u)$

$$
\text { mask }=T
$$

Key $\operatorname{ben}\left(m p k_{1} m s k, f\right): B_{f} \leftarrow B \cdot H_{f} \in \mathbb{Z}_{8}^{n \mathrm{~mm}} \quad$ (imput-independent evaluation)
$z_{5} \leftarrow\left[A \mid B_{f}\right]^{-1}(u)$
$C_{\left[\begin{array}{l}{[ } \\ 0\end{array}\right] \text { is a trapdoor for }\left[A \mid B_{f}\right]}^{[ }$
output $s k_{f} \leftarrow z_{f}$
Encrypt $(m p k, x, \mu)$ : Sample $s^{2} z_{\hat{q}}$
Sample $e_{1} \leftarrow x^{m}, \quad e^{\prime} \leftarrow x, \quad R \leftarrow\{0,1\}^{m \times R m}$
Output ct $=\left(s^{\top} A+e_{1}^{\top}, s^{\top}(B-x \otimes G)+e_{1}^{\top} R, s^{\top} u+e^{\prime}+\mu \cdot\left[\begin{array}{l}\left.\left.\frac{q}{2}\right\rceil, x\right)\end{array}\right.\right.$
$\operatorname{Decrypt}\left(s k_{f} \overline{Z Z}_{f}, c t\right)$ : compute $c t_{3}-\left[c t_{1} \mid c t_{2} H_{f, x}\right] z_{f}$ and round

$$
\left(c t_{1}, c c_{2}, c t_{3}\right)
$$

Correctreess. Suppose $f(x)=0$. Then

$$
\begin{aligned}
\left(s^{\top}(B-x \otimes G)+e_{1}^{\top} R\right) H_{f_{1} x} & =s^{\top}\left(B_{f}-f(x) \cdot G\right)+e_{1}^{\top} R H_{f_{x x}} \\
& =s^{\top} B_{f}+e_{1}^{\top} R H_{f_{1 x}} \quad \text { since } f(x)=0
\end{aligned}
$$

Next: $\left(s^{T}\left[A \mid B_{f}\right]+\left[e_{1}^{\top} \mid e_{1}^{\top} H_{f, x}\right]\right) z_{f}$

$$
=s^{\top} u+\left[e_{1}^{\top} \mid e_{1}^{\top} H_{f, x}\right] z_{f}
$$

Thus, we compute

$$
\mu \cdot\left[\frac{q}{2}\right\rceil+e^{\prime}-\left[e_{1}^{T} \mid e_{1}^{\top} H_{f, x}\right] z_{f}
$$

"small" since, $e_{1}, e^{r}$ are fum noise distribution and $\left\|H_{f x}\right\| \leqslant(n \log q)^{o(d)}$ where $d$ is the depth of the computation

Security. Proving security is delicate. Need to be able to simulate decryption beys, but we do not have a trapdoor for A (otherwise LWE is easy).
$\rightarrow$ In other words, if $x$ is the challenge attribute, we need to be able to give out keys for all functions $f$ where $f(x)=1$ but be unable to give out keys for $f(x)=0$.
$\rightarrow$ Key technique: "punctured trapdoor" that works only for functions $f$ where $f(x)=1$.
To leverage this technique, we will consider selective security where adversary has to declare attribute before seeing public parameters

Open problem: Adaptively-secure ABE from polynomial hardness of $\angle W E$

Proof of Security. We will consider a sequence of experiments:
Hybo: real security game encrypting $\mu_{0}$
Hyb, : after adversary selects the challenge attribute $x^{*} \in\{0,1\}^{\ell}$, challenger constructs the public bey as follows: $(A, T) \leftarrow \operatorname{TrapGen}(n, q)$

$$
\begin{array}{r}
\quad R \stackrel{R}{\leftarrow}\{0,1\}^{m \times m l} \\
B=A R+\left(x^{*} \otimes G\right) \\
m p k=(A, B, u) \text { where } u \stackrel{R}{\leftarrow} \mathbb{Z}_{\hat{q}}^{n}
\end{array}
$$

to answer key-generation queries for $f$, challenger computes

$$
B_{f} \leftarrow B \cdot H_{f}
$$

$Z_{f} \leftarrow\left[A \mid B_{f}\right]^{-1}(u)$ with trapdoor $\left[\begin{array}{l}T \\ 0\end{array}\right]$
to construct the challenge oiphertext, challenger samples $S \leftarrow \mathbb{Z}_{f}^{n}, e_{1} \leftarrow x^{m}, e^{\prime} \leftarrow x$ and outputs $c t=\left(s^{\top} A+e_{1}^{\top}, s^{\top}\left(B-x^{*} \otimes G\right)+e_{1}^{\top} R, s^{\top} u+e^{\prime}+\mu \cdot\left[\frac{q}{2}\right], x^{A}\right)$

Hybo and Hybi are statistically indistinguishable by LHL need a variant where

$$
\begin{aligned}
& \text { variant where } \\
& \left(A, A R, e^{T} R\right) \stackrel{3}{\approx}\left(A, U, e^{T} R\right)
\end{aligned}
$$

$H_{y} b_{2}$ : key-generation queries are answered without using trapdoor for $A$ : instead, challenger computes $R_{f, x^{*}}=R \cdot H_{f, x^{*}}$ and outputs
$\tau e^{\top} R$ is partial leakage on $R$

$$
z_{f} \leftarrow\left[A \mid B_{f}\right]^{-1}(u) \text { using trapdoor }\left[\begin{array}{c}
-R_{f, x^{*}} \\
I
\end{array}\right]
$$

Observe: $\left(B-x^{*} \otimes G\right) H_{f, x^{*}}=B_{f}-f\left(x^{*}\right) \cdot G$

Adversary can only query on $x^{*}$ where $f\left(x^{*}\right)=1$ (policy is unsatisfied).

$$
\begin{aligned}
\Rightarrow & \left(B-x^{*} \otimes G\right) H_{f, x^{*}}=B_{f}-G \\
& 11 \\
& A R+\left(x^{*} \otimes G\right)-\left(x^{*} \otimes G\right)=A R \\
\Rightarrow & A R H_{f, x^{*}}=B_{f}-G \Rightarrow\left[A \mid B_{f}\right] \cdot\left[\begin{array}{c}
-R_{f, x^{*}} \\
I
\end{array}\right]=G
\end{aligned}
$$

Critical here that $f\left(x^{*}\right)=1$ otherwise, we end up with

$$
\left[A \mid B_{f}\right] \cdot\left[\begin{array}{c}
-R_{f, x^{f}} \\
I
\end{array}\right]=0
$$

not a trapdoor since

$$
\left[\begin{array}{c}
-R_{f, x} \\
I
\end{array}\right] \text { not full }
$$

rank over the reals

Key obsersation: Trapdoor only works if $f\left(x^{*}\right)=1$. If $f\left(x^{*}\right)=0$, then $A R_{f, x^{*}}=B_{f}$ and we do not have a trapdoor for $\left[A \mid B_{f}\right]$. Referred to as a "punctured" trapdoor.

Hybris : replace challenge ciphertext with $\left(z_{1}^{\top}, z_{1}^{\top} R, Z^{\prime}, X^{*}\right)$ where $z_{1} \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{m}, Z^{\prime} \stackrel{R}{\leftarrow} \mathbb{Z}_{8}$
follows by LWE since challenge ciphertext is now

$$
\begin{aligned}
& s^{\top} A+e_{1}^{\top} \\
& S^{\top}\left(B-\left(x^{*} \otimes G\right)\right)+e_{1}^{\top} R=s^{\top} A R+e_{1}^{\top} R=\left(s^{\top} A+e_{1}^{\top}\right) R \\
& s^{\top} u+e^{\prime}+\mu_{0} \cdot\left(\frac{q}{2}\right)
\end{aligned}
$$

apply LWE to $s^{\top} A+e_{1}^{\top}$ and $s^{\top} u+e^{\prime}$

