
We will now show how to construct digital signatures from SIS in the random oracle model.

We first introduce the inhomogeneous SIS (ISIS) problem·

Inhomogeneous SIS : The inhomogeneous SIS problem is defined with respect to lattice parameters m
. m . g and a norm bound B. The ISISn ,m ,g, B

problem says that for Am, ~
, no efficient adversary can find a non-zero rector XE7M where

M

Ax = UEg and /I

Corresponds to finding a short vector in the lattice cost 2 (A) : = < + <
+

(A) where CELL is

any solution where Ac = u and &
+

(A) = < XE: Ax = 0 (modg)]

For
many choices of

parameters ,
hardness of SIS => hardness of inhomogeneous SIS

For convenience
,
from this point forward

, we will use the la-norm for vectors. Recall that Ilvlla = IIv/2 = Jillullo
↳> if vector is short in las norm

,

it is also short in le- norm

The SIS and ISIS problems can be leveraged to construct lattice trapdoors. We define the syntax here :

-> TrapGen (n,m , g, B) -> (A
,

+dA) : On input the lattice parameters n .
m

, g ,
the trapdoor-generation algorithm outputs a matrix

A
m

and a trapdoor A
M N

-> fa(x) +
y : On input XEg , computes y

= AX a
-> fa(tda

, y) - x : On input the trapdoor Ada and an element E
,

the inversion algorithm outputs a value

IIXII & B
Moreover

,
for a suitable choice of n, m

. g, ,
these algorithms satisfy the following properties :

-

For all ye , f(tdA , y) outputs X such that1IX & B and Ax =

y
xm

->

The matrix A output by TrapGen is statistically close to uniform over

y
Lattice trapdoors have received significant amount of study and we will not have time to study it extensively. Here

, we will

describe the high-level idea behind a very useful and versatile trapdoor known as a "gadget" trapdoor

First
, we define the "gadget" matrix (there are actually many possible gadget matrices - here

, we use a common one sometimes called

the "powers-of-two" matrix) :

6 = I
1248 ... zLlogGJ

124 ... zlg)
..

124 ... 24 y) ( =
.. In=I

T

g

Each row of G consists of the powers
of two (up to 240991). Thus

, GE
* Logg Oftentimes

,
we will just write

&

GE xm where m > n Llogg) .
Note that we can always pad 6 with all-zero columns to obtain the desired dimension.

Observation : SIS is easy with respect to G :

6 . () =O E norm of this rector is

Inhomogenous SIS is also easy with respect to G : take
any target rector

y
L*

Let Gillogy) , ..., til be the binary decomposition of : (the ith component of y). Then
,



↑

T

=·. I 1st ynisI&

J

Tloggs
↑ Observe that this is a 01 Vector (binary valued rector)

, so the lp-norm is exactly I

We will denote this "bit-decomposition" operation by the function C: 20 , 13M
↑

important : Gt is not a matrix (even though G is) !

Then
,

for ally ,
G ·G (y) =

y
and 116 (y1 =

1
. Thus

,
both SIS and inhomogeneous SIS are easy with respect to

the matrix G.

1)

We now have a matrix with a public "trapdoor. To construct a trapdoor function (useful for cryptographic applications) ,
we will

"hide" the gadget matrix in the matrix A
,

and the trapdoor will be a "short" matrix (i
.e., matrix with small entries) that recovers the

gadget.

More precisely,
a gadget trapdoor for a matrix A

**
is a short matrix RE

***
such that

A : R = G E 2 m
We say that R is "short" if all values are small

. (We will write /IRII to refer to the largest value in RJ
.

Suppose we know RE*** such that AR = G. We can then define the inversion algorithm as follows :

- fa(tdA = R
, y E) : Output x = R . G (y). Important note : When using trapdoor functions in a setting where the

-

We check two properties. adversary can see trapdoor evaluations, we actually need to

andomize the computation of f
.

1. AX = AR · G(y) = G · G(y) =

y so x is indeed a valid pre-image Otherwise
, we leak the trapdoor.

2
. IIx / = 11R . G (y)/1 =>

m · IIRIIG(y // = m . /IRI
(We will revisit this later)

Thus,
if IIRI is small

,
then IXI is also small (think of as a large polynomial in n).

(Recall we are using
les norm nowl

Remainingquestion
: How do we generate A together with a trapdoor (and so that A is statistically close to uniform)?

Many techniquestodo s,wewill look atoneapproach using the c L:

nx2m
Set A = [A/AR + 6) E

g

Output A , d = R = [] E 22mm
First

,
we have by construction that AR = AR + AR + 6 = G

,
and moreover /R =

1

. It suffices to argue that A is

statistically close to uniform (without the trapdoor R). This boils down to showing that AR + G is statistically close to uniform given

A .
We appeal to the LHL:

↓. From the
previous lecture

,
the function fA(x) = Ax is universal

2. Thus
, by the LL

, if m ? logg ,
then Ar is statistically close to uniform in when r 50,13.

3. Claim now follows by a hybrid argument (applied to each column of R

Thus
, given A

,
the matrix AR is still statistically close to uniform. Corresponding ,

A is statistically close to uniform.



Digital signatures from lattice trapdoors : We can use lattice trapdoors to obtain a digital signature scheme in the random oracle model

(this is essentially an analog of RSA signatures) :

- keyGen : (A
, da) = TrapGen (n

, m . 3 , B) [lattice parameters n
. m

, g, are based on security parameter x

Output vK = A and sk = +da
- Sign (sk , m) : Output 0 = F (dA

,
H(m))

.

Here
,

H : 20, 1
*
-> - is modeled as a random oracle.

-

Verify (vk
,

m
,
o) : Check that 101& and that fa(o) = H (m).

Consider instantiation with gadget trapdoors : Rationale for security
:

nxm
- Verification key : At Ly

- To forge a signature on m
, adversary has to find

signing key : R E 50,mm such that AR = 6 ~ such that Av = H(m)
-

signature on m: y
= H(m) E Z ·

Matrix A is statistically close to uniform and v is

output 0 = v = y)) < uniform
,

so this corresponds to solving the ISIS problem
-> Verification : check that Z

A . v = ARG (y) = 6 . 6 (y) =

y roblem :

Signing queries leak information about R.

and v is short Adversary can compute H(m) =

y and G (y),

· so signing becomes a linear function !

Early approach of Goldreich-Goldwasser - Halevi In the context of the security proof,
simulator needs

was insecure
-

explicit key-recovery attack by Nguyen , Ruger a way
to answer signing queries (without a

trapdoor for A).

Requirement : Randomize the signing algorithm to hide trapdoor R

Refinition. A function f : X- Y is a preimage-sampleable trapdoor function if there exists some efficiently-sampleable distribution Dow

X and a trapdoor inversion algorithm SamplePre with the following properties :

↓
- trapdoor for preimage sampling

(x + D
: (x,y)] y 3

y = f(x) So Pre(td
,
x)S le-

amy

"forward sampling"
2)

backward sampling" - two
ways to do the same thing

-

One approach in real scheme

Moreover
, give f andy ,

no efficient adversary can find x such that f(x) =

y.
- One approach in security preti--

Definition requires (1) for X =D
,

f(x) is uniform over Y

(2) for a random yy ,
inversion algorithm samples a preimage from D conditioned on f(x) =

y

Observe that a trapdoor permutation is a deterministic preimage sampleable trapdoor function : SamplePre returns the

unique preimage

If we use a preimage sampleable trapdoor function in digital signature construction
,

then we can argue security
(similar to arguing security of RSA-FDH in random oracle model).



ProofSketch: One-wayness
B
-- -adversaryChallenger

- will
program y to it

query to H

assumeAqueries
nature adversara

Six is a random index

(m)I
-> if this is query

it :

y = y
*

making signing

I I else
,

x -D
, y f(x)

,
add MH (x, y) to table

-

query onm

-

es if i n (y) is present in table
, reply with x

otherwise about

ifmt is query
it

,
then output of

otherwise about

If A makes & random oracle queries, B succeeds with probability /Q · SigAd[A].
- All random oracle queries are properly distributed

I since forward sampling and reverse sampling are statistically indistinguishable
~ All signature queries are properly distributed (as long as guess is correct)
· Guess is correct with prob.

YQ

- If
guess

is correct and A succeeds
,

then f(x) = H(m*) =

y
*

so B succeeds .

Constructing preimage sampleable trapdoor functions from SIS.

A(X) : = Ax (modg) [AE ,
x - )

First, we need to choose a suitable distribution on that allows us to efficiently sample preimages

In lattice-based cryptography ,
the distribution of interest is a discrete Gaussian distribution

Define the Gaussian mass function

gs(x) : = exp(-//st) where s is the width parameter
The discrete Gaussian distribution Ds over 7 is the distribution with probability mass function

pr [X = z1
=

E

(
for all Z E

M

X= DIE
,
s S

Let Am .
For a vector y , we will write XA(y) to denote the conditional distribution X-Dqs where Ax =

y.
↑ We may omit s when it is clear from context

.

We will use the following preimage sampling theorem :

- IIRI = maxi
,j/Ri,j)

Suppose AR = G and s > m/RInlogn. Then there is an efficient algorithm SamplePre where the following distributions

are 2--close for all y E :
Alternatively, trapdoor can be a matrix TE

***
where

AT = 0 (modg) and T is full runk over the reals and T is&x SamplePre (A ,
R

, y , s)] and <x + As (y)] I !
short

In addition
,
if A m and -Ds where mc 2nlogg and S2logm,

the distribution of Ax is statistically
close to uniform.



Constructing preimage-sampleable trapdoor functions from LWE :

-

TrapGen : Sample Am and & 30, 13mm
nx 2m

Let A = IAIAR + 61 Eg. (Observe that AR = G and IRI = 1
.

R = Imm
- fA(X) : Output AX (mod g).
- f (R

, y) : Use R to sample from As (y).

We require m Inlogg and smlogn. Then
,

the following holds :

(A ,R) Trap Gen (A , R) - Trapben
S (A , x

, AX) :
x + Dais 3 <(A , , ) :

Y, F(r ,
y)

Moreover
, inverting this function is exactly the ISIS problem.

- Matrix A output by TrapGen is statistically close to uniform by LHL : A = IAI+ 61 since
,
R 30, 13 M

-

Target distribution is Uniform() so inverting FA is precisely the ISIS problem

Recap : GPV signatures in the random orade model :

-

KeyGen : Sample (A,R) =- TrapGen . Output sk = R and vk : A
,

-

Sign (sk,
m) : Output 0 =FA (R

,
H(m))

.

- Assume here that H(m) is sample from DM
,

s
.

-

Verify (vk ,
m

,
ot : Check that 1011 is small and A lot : H(m)

·


