Groth-Ostrousky-Sahai (GOS) construction:

1. "Commit" to all of the wire valuer in the circuit
2. Prove that each output wire is the NAND of the infect wires.
3. Open the output wire to a 1 (and the input wires associated with the statement)

How to commit? Use a BGN encryption scheme!
Formally, let $C:\{0,1\}^{n} \times\{0,1\}^{h} \rightarrow\{0,1\}$ be the circuit

1. Let s be the number of wires in the circuit. Index then topologically.
2. Let $t_{1}, \ldots, t_{s} \in\{0,1\}$ be the value of the wires in $C(x, w)$
3. Prover commits to each wire by constructing a BGN ciphertext:

- Sample $r_{i} \stackrel{R}{\mathbb{R}} \mathbb{Z}_{N}$ and set $c_{i}=g^{t_{i}} h_{i}^{r_{i}}$
- For each NAND gate in the circuit (with wines i, j, k), construct a NI2K proof that $t_{k}=\operatorname{NAND}\left(t_{i}, t_{j}\right)$ with respect to c_{i}, c_{j}, c_{k} and $t_{i}, t_{j}, t_{k} \in\{0,1\}$.
Proof consists of commitments C_{1}, \ldots, C_{s}, NI2K proofs for each NAND gate and the openings for the statement $\left(r_{1}, \ldots, r_{n}\right)$ and for the output r_{s}.

To verify, check NI2K proofs all verify and that

$$
c_{i}=g^{x_{i}} h^{r_{i}} \text { for all } i \in[n] \text { and } c_{s}=g h^{r_{s}}
$$

Suffices to construct NI2k proof that $t_{k}=\operatorname{NAND}\left(t_{i}, t_{j}\right)$ and $t_{i}, t_{j}, t_{k} \in\{0,1\}$
Suppose $c=g^{t} h^{r}$. How to prove in zero-knowledge that $t \in\{0,1\}$ (ie., without revealing t)?

Idea: $t \in\{0,1\}$ if and only if $t(t-1)=0$. Use pairing to compute $g^{t(t-1)}$.

$$
\begin{aligned}
e\left(c, c g^{-1}\right) & =e\left(g^{t} h^{r}, g^{t-1} h^{r}\right) \\
& =\frac{e(g, g)^{t(t-1)}}{\text { vanishes }} \cdot \underbrace{e\left(g^{t}, h^{r}\right) \cdot e\left(h^{r}, g^{t-1}\right) \cdot e\left(h^{r}, h^{r}\right)}_{e\left(h\left(g^{2 t-1} h^{r}\right)^{r}\right)}
\end{aligned}
$$

Proof is $u=\left(g^{2 t-1} h^{r}\right)^{r}$.
Soundness. Suppose $c \neq g^{t} h^{r}$ for some $t \in\{0,1\}$ and $r \in \mathbb{Z}_{N}$. Then,

$$
\begin{aligned}
e\left(c, c g^{-1}\right) & =\frac{e\left(g^{t} h^{r}, g^{t-1} h^{r}\right)}{} \\
& =\underbrace{e(g, g)^{t(t-1)}}_{\bmod -q \text { subgroup of } G_{T}} \cdot \underbrace{e\left(g^{t}, h^{r}\right) \cdot e\left(g^{t-1}, h^{r}\right) \cdot e\left(h^{r}, h^{r}\right)}
\end{aligned}
$$

this component is non-zero in the mod- p subgroup of \mathbb{b}_{T}

Thus, there does not exist $u \in \mathbb{G}$ such that

$$
e\left(c, c g^{-1}\right)=\underbrace{e(h, u) .}_{\text {zero in } \bmod -p \text { subgroup }}
$$

Zero-knowledge: Proof is deterministic. To prove zero-knowledge, need to randomize (to hide values of t and r).

Prover picks $\alpha \stackrel{R}{\leftarrow} \mathbb{Z}_{N}^{*}$ Then,

$$
e(h, u)=e\left(h^{\alpha}, u^{\alpha^{-1}}\right)
$$

Instead of giving out u, give out $\pi_{1}=h^{\alpha}$ and $\pi_{2}=u^{\alpha^{-1}}$. Check that

$$
e\left(c, c g^{-1}\right) \stackrel{?}{=} e\left(\pi_{1}, \pi_{2}\right)=e\left(h^{\alpha}, u^{\alpha^{-1}}\right)=e(h, u) .
$$

Also give out $\pi_{3}=g^{\alpha}$ and have verifier check that

$$
e\left(g, \pi_{1}\right) \stackrel{?}{=} e\left(\pi_{3}, h\right) \quad[\text { necessary for soundness] }
$$

Correctness: $e\left(g, \pi_{1}\right)=e\left(g, h^{\alpha}\right)=e\left(g^{\alpha}, h\right)=e\left(\pi_{3}, h\right)$.

Randomization is sufficient to prove zero-knowledge.
Proving NAND relation: $\quad g^{t_{1}} h^{r_{1}} \quad g^{t_{2}} h^{r_{2}} \quad g^{t_{3}} h^{r_{3}}$
We can show that $t_{1}, t_{2}, t_{3} \in\{0,1\}$. Suffices to now show that

$$
t_{3}=\operatorname{NAND}\left(t_{1}, t_{2}\right) .
$$

When $t_{1}, t_{2}, t_{3} \in\{0,1\}$, this holds if and only if

$$
t_{1}+t_{2}-2 t_{3}+2 \in\{0,1\}
$$

[Can just check 8 possibilities for t_{1}, t_{2}, t_{3}]
Can now use homomorphisms of BGN to prove this:

$$
\begin{aligned}
& c_{1}=g^{t_{1}} h^{r_{1}} \\
& \begin{array}{l}
c_{2}=g t_{2} h^{r_{2}} \\
c_{3}=g t_{3} h^{r_{3}}
\end{array} \Rightarrow c_{1} \cdot c_{2} \cdot c_{3}^{-2} \cdot g^{2}=g^{t_{1}+t_{2}-2 t_{3}+2} h^{r_{1}+r_{2}-2 r_{3}+2} \\
& c_{3}=g^{t_{3}} h^{r_{3}}
\end{aligned}
$$

prove this is commitment to
of value

