Focus: lattice-based cryptography

- Conjectured post-quantum resilience
- Number-theoretic assumptions like discrete log and factoring are insecure against quantum computers
- Basis of many NIST post-quantam cryptography standards for post-quantum key agreement and digital Signatures
- Security based on worst-case hardness
- Cryptography has typically relied on average-case hardness (i.e., there exists some distribution of hard instances)
- Lattice-based cryptography can be based on worrt-case hardness (there does not exist an algorithm that solves all instances)
- Enables advanced cryptographic capabilities

Definition: An n-dimensional lattice $\mathcal{L} \subseteq \mathbb{R}^{n}$ is a discrete additive subspace of \mathbb{R}^{n}

- Discrete: For every $x \in \mathcal{L}$, there exists a neighborhood around x that only contains x :

$$
\begin{aligned}
& \because \because\} \text { - } \\
& \quad \text { neighborhood } B_{\varepsilon}(x)=\left\{y \in \mathbb{R}^{n}:\|x-y\| \leqslant \varepsilon\right\} \\
& \quad \text { discrete means } B_{\varepsilon}(x) \cap \mathcal{L}=\{x\}
\end{aligned}
$$

- Additive subspace: For all $x, y \in \mathcal{L}: x+y \in \mathcal{L}$

$$
-x \in \mathcal{L}
$$

Examples: $\mathbb{Z}^{n} \quad(n$-dimensional integer-valued vectors)
$q \mathbb{Z}^{n}$ (n-dimensional infegerratued rectors where each coordinate is multiple of q) "q-ary" lattice

Lattices typically contain iafinitely-many points, but are finitely-generated by taking integer linear combinations of a small number of basis vectors:

$$
\begin{aligned}
& \mathcal{B}=\left[b_{1}\left|b_{2}\right| \cdots \mid b_{k}\right] \in \mathbb{R}^{n \times k} \quad \begin{array}{l}
\text { (vectors are linearly } \\
\mathcal{L}(B)
\end{array}=\left\{\sum_{\left.i \in \in_{n}\right]} \alpha_{i} b_{i} \mid \alpha_{i} \in \mathbb{Z}\right\} \quad \text { is the rank of the } \\
& \\
& =B \cdot \mathbb{Z}^{k}
\end{aligned}
$$

(vectors are linearly independent over (R)

A lattice can have many basis:

standard basis for $\left.\mathbb{Z}^{2} 2^{2}\right\}$ Choice of basis makes a big difference in hardness of lattice problems alternative basis for $\left.\mathbb{Z}^{2}\right\} \longrightarrow$ often: bad basis is public key good basis is trapdoor

Definition. Let \mathcal{L} be $a_{n} n$-dimensional lattice. Then, the minimum distance $\lambda_{1}(\mathcal{L})$ is the norm of the shortest non-zeno vector in \mathcal{L} :

$$
\lambda_{1}(\mathcal{L})=\min _{v \in \mathcal{L} \backslash\{0\}}\|v\|
$$

The $i^{\text {th }}$ successive minimum $\lambda_{i}(\mathcal{L})$ is the smallest $r \in \mathbb{R}$ such that \mathcal{L} contains i linearly independent basis vectors of norm at mast r.
n $n=2$ care is easy
Computational problems on lattices: [problems parameterized by lattice dimension n] (can solve exactly using Gauss' algorithm)

- Shortest vector problem (SVP): Given a basis B of an n-dimensional lattice $\mathcal{L}=\mathcal{L}(B)$, find $V \in \mathcal{L}$ such that

$$
\|v\|=\lambda_{1}(\mathcal{L})
$$

- Approximate SUP $\left(S U P_{\gamma}\right):$ Given a basis B of an n-dimensional lattice $\mathcal{L}=\mathcal{L}(B)$, find $v \in \mathcal{L}$ such that $\|v\| \leqslant \gamma \cdot \lambda_{1}(\mathcal{L})$
- Decisional approximate $\operatorname{SVP}\left(G a p S V P_{\gamma}\right)$: Given a basis B of an n-dimensional lattice $\mathcal{L}=\mathcal{L}(B)$, decide if

$$
\lambda_{I}(\mathcal{L}) \leqslant 1 \text { or if } \lambda_{1}(\mathcal{L}) \geqslant \gamma
$$

Complexity of GapSVP depends on approximation factor γ : under randomized reductions "nearly polynomial" [mapping No instances to No instances wop. 1 and YES instances to YES instances w.p. $2 / 3]$
example language in NP \cap coAT is graph isomorphism $\binom{$ not known to be }{ in coN }

Short Integer Solutions (SIS): The SIS problem is defined with respect to lattice parameters n, m, q and a norm bound β. The SIS n, m, p, β problem says that for $A^{\mathbb{R}} \mathbb{Z}_{q}^{n \times m}$, no efficient adversary can find a nonzero vector $X \in \mathbb{Z}^{m}$ where $A x=0 \in \mathbb{Z}_{\delta}^{n}$ and $\|x\| \leqslant \beta$
In latice-based cryptography, the lattice dimension n will be the primary security parameter.
Notes: - The nom bound β should satisfy $\beta \leqslant q$. Othenise, a trivial solution is to set $x=(q, 0,0, \ldots, 0)^{\top}$.

- We need to chase m, β to be large enough so that a solution does exist.
\rightarrow When $m=\Omega\left(n \log _{b}\right)$ and $\beta>\sqrt{m}$ a solution always exists. In particular, when $\left.m \geqslant \Gamma_{n} \log q\right\}$, there always exists $x \in\{-1,0,1\}^{m}$ such that $A x=0$:
- There are $2^{m} \geq 2^{n \log }=q^{n}$ vectors $y \in\{0,1\}^{m}$
- Since $A_{y} \in \mathbb{Z}_{q}^{n}$, there are at most q^{n} possible outputs of $A_{y}\left\{\begin{array}{l}B_{y} \text { a counting agguenent, there exist } \\ y_{1} \neq y_{2} \in\{0,1\}^{n} \text { such that } A_{y_{1}}=A_{y_{2}}\end{array}\right.$
- Thus, if we et $x=y_{1}-y_{2} \in\{-1,0,1\}^{m}$, then $A x=A\left(y_{1}, y_{2}\right)=A_{y_{1}}-A y_{2}=0 \in \mathbb{Z}_{b}^{n}$ and $\left\|y_{1}-y_{2}\right\| \leqslant \sqrt{n}$

SIS can be viewed as an average-case $S V P$ on a lattice defined by $A \in \mathbb{Z}_{b}^{n \times m}$:

$$
\mathcal{L}^{\perp}(A)=\left\{x \in \mathbb{Z}^{m}: A x=0(\bmod q)\right\}
$$

$\uparrow \quad \tau$ in coding-theoretic terms, the matrix A is a "parity-cleck" matrix
called a "q-ary" lattice since $q \mathbb{Z}^{m} \leq \mathcal{L}^{\perp}(A)$

SIS problem is essentially finding short vectors in the lattice $\mathcal{L}^{\perp}(A)$ where $A \subseteq \mathbb{Z}_{\theta}^{n \times m}$
Theorem. For any $m=\operatorname{poly}(n)$, any $\beta>0$, and sufficiently large $q \geqslant \beta$-poly (n), there is a probabilistic polynomial time (PPT) reduction from solving GapSVP or SIVP γ in the worst case to solving SIS n,m,i, β with non-negligible probability, where $\gamma=\beta \cdot \operatorname{poly}(n)$.

We can use SIS to directly obtain a collision-resistant hash function (CRHF).
Definition. A keyed hash family $H: K \times x \rightarrow y$ is callion-resistant if the following properties hold:

- Compressing: $|y|<|x|$
- Collision-Resistant: For all efficient adversaries A :

$$
\operatorname{Pr}\left[k \nprec k ;\left(x, x^{\prime}\right) \leftarrow A\left(1^{\lambda}, k\right): H(k, x)=H\left(k, x^{\prime}\right) \text { and } x \neq x^{\prime}\right]=\operatorname{neg}(\lambda) \text {. }
$$

We can directly appeal to SIS to obtain a CRHF: $H: \mathbb{Z}_{q}^{n \times m} \times\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ where we set $m>\lceil n \log q\rceil$.
In this case, domain has size $2^{m}>2^{n \log b}=q^{n}$, which is the size of the output space. Collision resistance follows assuming SIS $S_{n, m, q, \beta}$ for any $\beta \geqslant \sqrt{\left[n \log _{q}\right\rceil}$

The SIS hash function supports efficient local updates:
Suppose you have a public hash $h=H(x)$ of a bitt-string $x \in\{0,1\}^{m}$. Later, you want to update $x \mapsto x^{\prime}$ where x and x^{\prime} only differ on a few indices (eeg., updating an entry in an address book). For instance, suppose x and x^{\prime} differ only on the first bit (eeg., $x_{1}=0$ and $x_{1}^{\prime}=1$). Then observe the following

$$
\begin{aligned}
h=H(k, x) & =A \cdot x \\
& =\left(\begin{array}{ccc}
1 & 1 & 1 \\
a_{1} & a_{2} & \ldots \\
1 & 1 & a_{m}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right)=\sum_{i \in[m]} x_{i} a_{i}=\sum_{i=2}^{m} x_{i} a_{i} \quad \text { since } x_{1}=0 \\
h^{\prime}=H\left(k, x^{\prime}\right) & =A \cdot x^{\prime} \\
& =\sum_{i \in[m]} x_{i}^{\prime} a_{i}=x_{1}^{\prime} a_{1}+\sum_{i=2}^{m} x_{i}^{\prime} a_{i}=a_{1}+\sum_{i=2}^{m} x_{i}^{\prime} a_{i}=a_{1}+h \quad \text { since } x_{i}^{\prime}=x_{i} \text { for all } i \geqslant 2
\end{aligned}
$$

Thus, we can easily update h to h^{\prime} by just adding to it the first column of A without (re)computing the full hash function.

The SIS hash fanction is universal - this will be a very useful property (in conjunction with the leftover hash lemma)
Definition. Let $H: K \times X \rightarrow y$ be a keyed hash function. We say H is universal if for all $x_{0}, x_{1} \in X$ where

$$
x_{0} \neq x_{1}, \operatorname{Pr}\left[k \stackrel{R}{\leftarrow} K: H\left(k, x_{0}\right): H\left(k, x_{1}\right)\right] \leqslant 1 /|y| .
$$

Lemma. The SIS hash function $H: \mathbb{Z}_{q}^{n \times m} \times\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ is universal.
Proof. Take any $x_{0}, x_{1} \in\{0,1\}^{m}$ with $x_{0} \neq x_{1}$. If $H\left(A, x_{0}\right)=H\left(A, x_{1}\right)$, then $A\left(x_{0}-x_{1}\right)=0$. Let $a_{1}, \ldots, a_{m} \in \mathbb{Z}_{8}^{n}$ be columns of A. Then,

$$
A\left(x_{0}-x_{1}\right)=\sum_{i \in(m)} a_{i}\left(x_{0, i}-x_{1, i}\right)
$$

Since there exists some $j \in[m]$ where $x_{0, j} \neq x_{1, j}$, the above relation holds only if

$$
a_{j}=\underbrace{\left(x_{1, j}-x_{0, j}\right) \sum_{i \neq j} a_{i}\left(x_{0, i}-x_{1, i}\right)}_{\text {independent of } a_{j}}
$$

Note: When of is prime, this argument also extends to any domain that is subset of \mathbb{Z}_{q}^{n}. Namely

$$
H: \mathbb{Z}_{q}^{n \times m} \times \mathbb{Z}_{q}^{m} \rightarrow \mathbb{Z}_{q}^{n}
$$

is universal.
Thus,

$$
\begin{aligned}
\operatorname{Pr}[A & \left.\stackrel{R}{\bullet} \mathbb{Z}_{q}^{n \times m}: A\left(x_{0}-x_{1}\right)=0\right] \\
& =\operatorname{Pr}\left[a_{1}, \ldots, a_{m} \stackrel{R}{R} \mathbb{Z}_{q}^{n}: a_{j}=\left(x_{1, i}-x_{0}, i\right) \sum_{i \neq j} a_{i}\left(x_{0 ; i}-x_{1}, i\right)\right] \\
& =\frac{1}{q^{n}}
\end{aligned}
$$

Definition. Let X be a random variable taking on values in a finite set S. We define the guessing probability of X to be

$$
\max _{s \in S} \operatorname{Pr}[x=s]
$$

We define the min-entropy of X to be

$$
H_{\infty}(x)=-\log \max _{s \in S} \operatorname{Pr}[x=s]
$$

Intuitively: if a random variable has k bits of min-entropy, then its most likely outcome occurs with probability at most 2^{-k} (ie., there exists at least 2^{k} possible values for X)

Definition. Let D_{0}, D_{1} be distributions with a common support S. Them, the statistical distance between D_{1} and D_{2} is defined to be

$$
\Delta\left(D_{0}, D_{1}\right)=\frac{1}{2} \sum_{s \in S}\left|\operatorname{Pr}\left[t \leftarrow D_{0}: t=s\right]-\operatorname{Pr}\left[t \leftarrow D_{1}: t=s\right]\right|
$$

If D_{0} and D_{1} are ε-close, them no adversary can distinguish with advantage better than ε
\longrightarrow when ε is negligible, we say the twos distributions are statistically indistinguishable
denoted $D_{0} \stackrel{s}{\approx} D_{1}$
\rightarrow Contrast with computational indistinguishability which says no efficient adversary can distinguish
Theorem (Leftover Hash Lemma). Let $H: K \times X \rightarrow y$ be an universal hash function. Suppose $x \in X$ is a random variable with t bits of min-entropy. Then, define the following two distributions:

$$
\begin{aligned}
& D_{0}: k \stackrel{R}{\leftarrow} K, y \leftarrow H(k, x) \text {; output }(k, y) \\
& D_{1}: k \leftarrow K, y \leftarrow y \text {; output }(k, y)
\end{aligned}
$$

The statistical distance between D_{0} and D_{1} is at most

$$
\Delta\left(D_{0}, D_{1}\right) \leqslant \frac{1}{2} \sqrt{|y| / 2 t}
$$

Typical setting: H is universal and $|y|=2^{t-2 \lambda}$. By LHL, $(k, H(k, x)) \stackrel{\&}{\approx}(k, y)$ where $y<y$.
This is an example of a "randomness extractor."
$\left.\begin{array}{l}\text { We have a source }(x) \text { with min -entropy, but not necessarily uniform. } \\ \text { we want to extract from it a uniform random value }\end{array}\right\}$
LHL shows that universal hash functions can "smooth" out a non-uniform distribution

Incurs loss of 2λ bits of entropy
Common application: extracting uniformly random cryptographic beys from non-unitorm source
\rightarrow consider $H: \mathbb{Z}_{2}^{n \times m} \times\{0,1\}^{m} \longrightarrow \mathbb{Z}_{2}^{n}$

$$
H(A, x):=A x^{\uparrow} \quad \uparrow
$$

suitable for use could be binary sur table a symmetric bey
representation of as a group element

Not typically used in practice because we need distribution with at least $n+2 \lambda$ bits of min-entropy $(\geqslant 384$ bits if $n=\lambda=128)$
Practical heuristic: use random orack set $m=\theta\left(\ln \log _{8}\right)$
By a hybrid argument, if we sample $R \leftarrow\{0,1\}^{m \times m}$, then $A R$ is statistically close to uniform over $\mathbb{Z}_{q}^{n \times m}$
We will see this used in many constructions

Commitments from SIS (recall: commitment is a "sealed envelope")

- Setup (1^{λ}) \rightarrow crs: Samples a common reference string
- Commit (cis, $\mu ; r$) $\rightarrow \sigma:$ Commits to a message μ with randomness r

Useful building block for zerr-knouledge proofs and other cryptographic protocols

- Setup (11): Let $n_{1} q$ be lattice parameters, and $m=\theta\left(n \log _{q}\right)$

Sample $A_{1}, A_{2} \stackrel{R}{\leftarrow} \mathbb{Z}_{f}^{n \times m}$. Output ers $=\left(A_{1}, A_{2}\right)$

- Commit (cos, $\mu ; r$): Output $\sigma=A_{1} m+A_{2} r$ where cis $=\left(A_{1}, A_{2}\right)$
$\mu, r \in\{0,1\}^{m}$
\} Here, opening can simply be the pair (m, r) Verifier decks that $\sigma=\operatorname{Commit}(c r s, m ; r)$

Theorem (Statistically Hiding). If $m>3 n \log q_{\text {, }}$, then scheme is statistically hiding.
Proof. By the LHL, for $r \stackrel{R}{\leftarrow}\{0,1\}^{m}, A_{2} r \approx$ uniform $\left(\mathbb{Z}_{q}^{\hat{q}}\right)$. Thus, $A_{2 r}$ acts as a one-time pad for $A_{1} m$.

Proof. Suppose A can break the binding property. We use A to construct SIS adversary B :

Algorithm A
SIS $_{n, 2 m, q, \sqrt{2 m}}$ challenger

$$
\left[A_{1} \mid A_{2}\right] \stackrel{R}{\rightleftarrows} \mathbb{Z}_{q}^{n \times 2 m}
$$

If A is successful, then $\mu_{1} \neq \mu_{2}$ and $\left[A_{1} \mid A_{2}\right]\left[\begin{array}{l}\mu_{1} \\ r_{1}\end{array}\right]=\sigma=\left[A_{1} \mid A_{2}\right]\left[\begin{array}{l}\mu_{2} \\ r_{2}\end{array}\right]$, which means $\left[A_{1} \mid A_{2}\right]\left[\begin{array}{l}\mu_{1}-\mu_{2} \\ r_{1}-r_{2}\end{array}\right]=0$. Since $\mu_{1} \neq \mu_{2}$ this is a non-zers SIS solution with norm at most $\sqrt{2} m$.

Compare this with Pedersen commitments from discrete log:
Setup $\left(1^{\lambda}\right)$: Take a prime-order group $\mathbb{G} \leftarrow G$ roup $G e n\left(1^{\lambda}\right)$. Let p be the order of \mathbb{C}. Sample $g, h \stackrel{R}{\leftarrow} \mathbb{G}$. Output ers $=(g, h)$
Cominit (cos, $\mu ; r$): Output $g^{\mu} h^{r}$.

We will see many similar parallels between discrete \log based systems and lattice-bared systems

