Previously, we showed how to construct verifiable computation - this is suitable when the client knows the program and input

- → This is a succinct non-interactive argument (SNARG) for a deterministic polynomial -time computation (SNARG for P)
- But in many cases, the input might not be known to the verifier L=> Example: Server publishes a hash of some database Client performs a guery and wants a proof that the guery was performed correctly relative to the hash of the dostabase.
 - 1> For this setting, we need a SNARG for NP. Namely, we consider the following NP relation:
 - Statement: hash he of the database contents, output y of the query
 - Witness: docto-base D
 - Relation checks that h= Hash (D) and y is output of Query algorithm on D

We will construct a SNARG for NP where the size of the proof is a <u>constant</u> number of group elements, regardless of the complexity of the NP relation Lo Construction will rely on random oracles

Starting point: Polynomial commitment scheme

- We will work over TFp (the integers modulo p). A polynomial commitment scheme over TFp consists of four algorithms:
 - Setup (d): Takes the (mox) degree of the polynomial and outputs a common reference string crs
 - Commit (crs, f) $\xrightarrow{\longrightarrow}$ c: Commits to the polynomial f (of degree at most d) Eval (crs, c, f,x) $\xrightarrow{\longrightarrow}$ π : Computes an opening π to the evaluation y = f(x)- Verify (crs, c, x, y, π) $\xrightarrow{\longrightarrow}$ 0/2: Checks whether opening is valid or not

Correctness: Let f(x)= fot fix + ... + for x^d be a polynomial and x* E IFp be a point. If $crs \leftarrow Setup(a)$, $c \leftarrow Commit(crs, f)$, $\pi \leftarrow Eval(crs, c, x^*)$, then Verify (crs, c, x, $f(x^*)$, π) = 1

Binding: Given crs, difficult to come up with commitment c, a point X, and value /opening poirs (y, , Th,), (y2, T2) where y, \$ y2 and

Verify (Crs, c, x, y1, π_1) = $1 = \text{Verify}(\text{crs}, c, x, y_2, \pi_2)$ For applications, often need a stronger "soundness" property (will not be too important for understanding the construction)

Kate-Zowerucha- Goldberg (KZG) construction:
Setup (d): Sample
$$\alpha \stackrel{\text{erg}}{=} \text{IFp}$$
 (p is the order of the group, scheme]
 $crs = (g, g^{\alpha}, g^{\alpha^2}, ..., g^{\alpha^d})$ (supports polynomials over IFp
Commit (crs, f): Commitment is the element $g^{f(\alpha)}$.
Suppore $f(X) = f_0 + f_1 X \cdots + f_d X^d$.
Let $crs = (g_0, g_1, ..., g_d)$ where $g_i = g^{\alpha^2}$. Then commitment is
 $c = \prod_{i=0}^{d} g_i^{f_i} = \prod_{i=0}^{d} g_i^{f_i} \alpha^i = g^{f(\alpha)}$.
Final (crs, c, f, n^{efg}) let $u = f(n^{\text{efg}})$ Geal is the application of T that us $f(x^{\text{efg}})$.

where it is the polynomial associated with c.

Define the polynomial
$$\hat{f}(X) = f(X) - y$$
. Observe that $f(x) = y$
if and only if $\hat{f}(x^{*}) = 0$, or equivalently, if x^{*} is a root of \hat{f} .
This means there exists a polynomial $g(X)$ such that
 $\hat{f}(X) = (X - x^{*}) g(X)$.

The opening will be a commitment to the polynomial
$$g(x) = \sum_{i=0}^{n} g_i x^i$$

 $\pi = \prod_{i=0}^{d-1} g_i^{g_i} = \prod_{i=0}^{d-1} g_i^{g_i} x^i = g_i^{g_i} g_i^{g_i}$

Verify (crs, c, x^* , y, π): Verifier will essentially check that the polynomials \hat{f} and $(X - x^*)q(X)$ are equal at $X = \alpha$. Normally, we have that $C = g^{\hat{f}(\alpha)}$ and $\pi = g^{\hat{g}(\alpha)}$.

From
$$c = g^{f(\alpha)}$$
, verifier computes $c \cdot g^{-3} = g^{f(\alpha)} - 4 = g^{\hat{f}(\alpha)}$.
From $\pi = g^{g(\alpha)}$, verifier computes
 $e(g_1 g^{-x^*}, \pi) = e(g^{\alpha - x^*}, g^{g(\alpha)}) = e(g, g)$

Verification relation is thus

$$e(g, c \cdot g^{-y}) \stackrel{?}{=} e(g, g^{-x^{*}}, \pi)$$

Binding relies on the d-strong Diffie-Hellman assumption:
given
$$g, g^{\alpha}, g^{\alpha^2}, ..., g^{\alpha^k}$$
, hard to come up with $(c, g^{\alpha+c})$ for any $c \neq -\alpha$.

Suppose adversary produces a commitment
$$C = g^S$$
 and opens C to two different values y_1 and y_2 at $x^{\#}$ with proof $\pi_1 = g^{t_1}$ and $\pi_2 = g^{t_2}$.

Note: reduction does not know S, t., t.

Then, by the verification relation:

$$e(g, c \cdot g^{-y}) = e(g^{\alpha - x^{*}}, \pi)$$

 $e(g, c \cdot g^{-y}) = e(g^{\alpha - x^{*}}, \pi_{2})$

In the exponent, this means

$$\begin{array}{rcl} S-y_{1} &= t_{1} \left(\alpha - x^{*} \right) \implies t_{1} \left(\alpha - x^{*} \right) \neq y_{1} - y_{2} = t_{2} \left(\alpha - x^{*} \right) \\ S-y_{2} &= t_{2} \left(\alpha - x^{*} \right) \implies \\ &= > \left(t_{1} - t_{2} \right) \left(\alpha - x^{*} \right) = y_{2} - y_{1}, \\ &= > \frac{t_{1} - t_{2}}{y_{1} - y_{1}} = \frac{1}{\alpha - x^{*}} \end{array}$$

Thus $g^{d-\chi^{*}} = g^{\frac{1}{d_{1}-d_{1}}} = \left(\frac{\pi_{1}}{\pi_{2}}\right)^{\frac{1}{d_{2}-d_{1}}}$, which the reduction can compute.

Note: $y_1 \neq y_2$ since the adversary reads to open c two different ways. If the adversary outputs $x_1^{*} = \alpha$, then reduction trivicily breaks the assumption.

We will develop protocols to prove additional properties on committed polynomicals. To motivate this, we first sketch the ideas underlying the PLONK scheme.

- For PLONK, the computational model will be arithmetic circuits
 - Gates will be addition or multiplication
 - Wires will be labeled by a field element (IFp element)

For any choice of input (X1, X2, X3), can define an execution trace. Suppose $X_1 = 1$, $X_2 = 2$, $X_3 = 3$ ----> Then the trace will be: <u>gate</u> <u>left input</u> <u>right input</u> 1 1 2 3 2 2 3 5 3 3 5 15

Can be used to implement Bodean circuits

The idea: prover will choose a polynomial that interpolates the entire execution trace.

Take a point we ETFp. Let m be a bound on the number of gates in the Circuit and let n be the number of public inputs (i.e., the statement) that is known to the verifice. We require ord(w) > 3m+n. Nomely, the following elements are all distinct in Try: ω^{n+1} , ω^{n+1} , ..., ω° , ω^{1} , ..., ω^{3m}

The prover will interpolate the trace polynomial T where $T(\omega^{-i}) = value of ith public input$ $T(\omega^{3j}) = value of left input to the jth gate$ $<math>T(\omega^{3j+1}) = value of right input to the jth gate$ $<math>T(\omega^{3j+2}) = value of output of jth gate$

The polynomial T encodes the entire execution of C. The prover commits to C using a polynomial commitment scheme. Now the prover needs to show the following: followine :

- 1. Input consistency : T(w⁻ⁱ) = value of ith public input
- 2. Every gate is correctly implemented.
 3. Wires are labeled consistently: if output of gate j is left input of gate k, then T(w^{3j+2}) = T(w^{3k}).

4. Output gate has the correct value

Proving that the output gate has the correct value is just opening the polynomial commitment? at w^{31C1-1}.

Suffices to consider the other properties. All of these can be reduced to a "zero-testing" gadget: show that a polynomial f(X) is zero on a set S.

First define the nonishing polynomial for $S: Z_S(X) = TT(X-t)$. tes

Then f is zero on S if and only if there exists a polynomial g(X) such that $f(\mathbf{X}) = Z_s(\mathbf{X}) \cdot q(\mathbf{X}).$

Suppose the verifier has a commitment to f. To prove that f is zero on S, we can use the following protocol: I. Prover commits to the polynomical of where $f(X) = Z_S(X) \cdot g(X)$

- 2. Verifier samples a random r = TFp
- 3. Proven opens commitments to f and q at r 4. Verifier checks that $f(r) \stackrel{?}{=} Z_{S}(r) q(r)$

To see why this is sound. Suppose f(X) is not zero on S. Then, there does not exist a polynomial g(x) such that $f(x) = Z_s(x) \cdot g(x)$.

Consider the polynomial $h(x) := f(x) - Z_s(x) \cdot g(x)$. This is a polynomial of degree at most of and is not the zero polynomial. Thus, it has at most of roots. Then, $\Pr[h(r)=0] = \frac{d}{P} = negl.$

$$h(r) = 0 \iff f(r) = Z_{s}(r)q(r)$$

In the SNARG, the commitments are implemented usi KZG polynomial commitments. The randomness r is derived using the random aracle (by hashing the imput) - as in First-Shamir.

Proof then consists of three group elements: commitment to g, openings for f and g

Back to PLONK. Prover commits to trace polynomial T. 1. <u>Input consistency</u>: Suppose public input is $x = (x_1, ..., x_n)$. Then, the prover should show that $T(\omega^{-i}) = x_i$ for all $i \in [n]$. To do so, prover (and verifier) interplate polynomial V(X) where V(w-i) = X: Then, the polynomial T(X) - v(X) is zero on the set S = { 10 -1, ..., 10 - n J. Prover and the verifier now run the above zero-testing protocol. Note: In the zero-testing protocol, the prover needs to reveal T(r) - v(r). It does so by revealing T(r) and the verifier can then compute T(r) - v(r) itself. a. <u>Gate consistency</u>: Define a selector polynomial V(X) where. $V(\omega^{3l}) = 1$ if gate l is an addition gate $V(\omega^{3l}) = 0$ if gate l is a multiplication gate Suppose all the gates are implemented correctly: - If gate l is an addition gate: $T(w^{2l}) + T(w^{2l+1}) = T(w^{2l+2})$ - If gote l is a multiplication gate: $T(\omega^{3l}) \cdot T(\omega^{3l+1}) = T(\omega^{3l+2})$ This means for all $X \in \{\omega^{0}, \omega^{3}, ..., \omega^{3|c|-3}\}$ $(x^{\omega})T = [(x\omega)T + (x)T]((x) - i) + [(x\omega)T + (x)T](x) + (\omega x)]$ Reduces to zero-test protocol on the set fw, w? ..., w?? Note: To implement this protocol, verifier needs to evaluate polynomial $\sqrt{(x)}T - [(x_{\omega})T + (x_{\omega})T + (x_{\omega})T$ at a random point r. This can be implemented using KZG by having prover open T at r, wr, and with Verifics can compute v(r) itself.

3. Wire consistency:

 $T(\omega^{-1}) = T(\omega^{\circ})$ In this example, we would require that $T(\omega^{-2}) = T(\omega^{1}) = T(\omega^{3})$ $T(\omega^{-3}) = T(\omega^{4})$ $T(\omega^2) = T(\omega^6)$ $T(\omega^5) = T(\omega^7)$

Whenever a wire value is used multiple times, we introduce a constraint. Every wire value participates in at most one constraint group: $\omega^{-3} \omega^{-2} \omega^{-1} \omega^{\circ} \omega^{\circ} \omega^{2} \omega^{3} \omega^{4} \omega^{5} \omega^{6} \omega^{7} \omega^{8}$

We can view this "replication pottern" as inducing a permutation P on the set $(\omega^{-3}, \omega^{-2}, ..., \omega^8)$. For each input, ω^6 , $P(\omega^5)$ sends it to ω^0 when j is the index of the next copy of the wire associated with index i.

P can be described by a polynomial of degree 3m + n (just like T). Checking equality of the vive constraints then boils down to checking $T(X) \stackrel{*}{=} T(P(X))$ for all $X \in \int w^{-n}$, ..., w^{3m} . The polynomial P is known to the verifier so this can again be done using the zero-testing protocol.

- Summary: To prove that C(x, w) = 1, prover commits to the execution trace T(x) of C and then proves the following statements:
 - Input consistency Each proof requires revealing a <u>constant</u> number - Gate consistency of group elements (i.e., Commitments + Openings to - Wire consistency the polynomial commitment scheme)
- Soundness requires random procle (to make the interactive protocol non-interactive) and the algebraic group model (or generic group model) to argue soundness of the KZG scheme
- Many extensions: Can modify base protocol so prover complexity is quasi-linear in [C] rother than quadratic
 - Can consider multivariate polynomials over TF2 to support linear-time prover (HyperPlank)
 - Can support more general gates by extending gate consistency Checks