
Previously, we showed how to construct verifiable computation
- this is suitable when

the client knows the program and input
↳ This is a succinct non-interactive argument (SNARG) for a deterministic polynomial-time

computation (SNARG for PL

But in
many cases

,
the input might not be known to the verifier

↳ Example : Server publishes a hash of some databare. Client performs a query
and

-

wants a proof that the query was performed correctly relative to the sh

of the database.

↳ For this setting,
we need a SNARG for NP. Namely ,

we consider the following NP

relation :

- Statement : hash h of the database contents
, output y of the

query
- Witness : database D

-

Relation checks that h : Hash (D) and y is output of Query algorithm on D

We will construct a SNARG for NP where the size of the proof is a constant number

of group elements
, regardless of the complexity of the NP relation

↳ Construction will rely on random oracles

Starting point : Polynomial commitment scheme

We will work over #p (the integers modulo p). A polynomial commitment scheme over Ip
consists of four algorithms :

-

Setup (d) : Takes the (max) degree of the polynomial and outputs a common reference

string crs

- Commit (crs
, f) -> C : Commits to the polynomial - (of degree at most d)

- Eval (crs
,

c
,
f

,x)-> T : Computes an opening it to the evaluation
y

= f(x)
-

Verify (crs
,

c
,
x,y ,

i) -> U/1 : Checks whether
opening is valid or not

Correctness : Let f(x) = fot fixt :.. fax* be a polynomial and *

-Ap be a point.

If crs = Setup (d)
,

C 7 Commit (cis
,

5)
,

T + Eval (crs, c
,

x
*)

,
then

Verify (ors , , ,f(x*)
, π) = 1

Binding : Given crs
,

difficult to come
up

with commitment c
,

a point X
,

and

value/opening pairs (y, ii) , lyz ,
ii) where y, Fy2 and



Verify (ors, c
,

X
, 41 , M1) = 1 = Verity Cars

,
c

, X, y2,
M2)

For applications, often need a stronger "soundness"
property (will not be too important for

understanding the construction)

Kate-Zaverucha-Goldberg (K26) construction :

R

Setup (d) : Sample < + Tp I p is the order of the group,
scheme I

crs = (g , go , ga", ..., gad) sports polynomials over (Fpsay
f(x)Commit (crs , f) : Commitment is the elementq -

d

Suppose -(4)
: fo + f

,
X ..... fdX

. i
&

Let crs = (go , g 1,..., gd)
,

where giig .
Then commitment is

c

= g5 =#gi
e

- gf(x)
Eval (crs

,
c

,
f

, x
*) : Let

y
: f(x*). Goal is to construct a proof it that y

: f(x* )
.

where f is the polynomial associated with c.

Define the polynomial F(X) = f(X) -y. Observe that f(x) =

y
a

if and only if -(x*) = 0
,

or equivalently, if ** is a root of f.

This means there exists a polynomial g(X) such that

f(X) = (X- x* )g(X).

The opening will be a commitment to the polynomial g(X)= gix
d-1

π = T 8:

i = 0

Gi =of
six

= g8()

Verify (crs,
c

,
x*, y ,
i) : Verifier will essentially check that the polynomials and

(X - x
*)g(X) are equal at X = 2. Normally,

we have that

c = gf(d) and T = g8(d).
5(<)

verifier computes c .g = gf(d)
-

%
= gf(d).From Geeverifier computes (- x

*)g(x)
e(g , g

x*, π) = e(gd
-x*, g8(d)) = e(g, g) C

Verification relation is thus

e(g ,
c . g-% ) = e (g , g*

*

π)



Binding relies on the d-strong Diffie-Hellman assumption :

- d
given g , go , g ,..., g ,

hard to come up with (c
, g c) for any <F-2.

Suppose adversary produces a commitment c = gS and sens c to two different
of

values y ,
and

y2 at
*

with proof it ,
= gt1 and M2 = gtz .

Note: reduction does not know Sit,t

Then
, by the verification relation :

elg,cgg)=eCgaxtite
In the exponent , this means

s -

y ,
= t(d- x

* )
-> +

, (- x
* ) + y1

-

yz = t2(x - x
*)

s -

yz
= t( - x

*)

=>> (t,
- +2)(6 - x

* ) = y2 - y ,

=>

It =

x
*

Thus ga = gi=y

,
whhe the reduction can compute .

Note: y.
F Ye since the adversary needs to open c two different ways. If the

adversary outputs ** = <
,

then reduction trivially breaks the assumption.

We will develop protocols to prove additional properties on committed polynomials. To

motivate this
, we first sketch the ideas underlying the PLONK scheme.



For PLONK
,
the computational model will be arithmetic circuits

- Gates will be addition or multiplication
- Wires will be labeled by a field element (Fp element)

execution trace. Suppose X ,
: 1

, X2 = 2
,

Xs = 3.e
For

any choice of input (X, X2
, X3)

,
can define an

1 -> Then the trace will be :

gateAtinput iinput put
1 1 2 3

22 E 5

Can be used to implement Boolean circuits 3 3 5 15

The idea :

prover will choose a polynomial that interpolates the entire execution

trace
.

Take a point we Ep .
Let m be a bound on the number of gates in the

circuit and let i be the number of public inputs (i.e.,
the statement) that is

known to the verifier. We require ord(w) > 3m + n
.

O
Namely ,

the following
elements are all distinct inTp : cott

,
wht

,...,
w

,
wh

...,
coble

The prover will interpolate the trace polynomial T where

T(w-"C = value of ith public input
T (w3j) = value of left input to the jth gate
T(3+) = value of ht input to the - th

rig j gate
↑ (cobj+2) = value of output of jth gate

The polynomial T encodes the entire execution of C. The
prover commits to

Cusing a polynomial commitment scheme. Now the proves needs to show the

following ·
↓ Input consistency : T(w-) = value of its public input

2. Every gate is correctly implemented
3. Wires are labeled consistently

: if output of gate ; is left input of gate
K

,
then T(w3j +2) = T(w3K)

.

4. Output gate has the correct value



Proving that the output gate has the correct value is just opening the polynomial commitment

at 13K1.

Suffices to consider the other properties. All of these can be reduced to a "zero-testing"
gadget : show that a polynomial f(X) is zero on a set S.

First define the vanishing polynomial for S : Is (X) = (X - t)
·

Then 5 is zero on S if and only if there exists a polynomial g(X) such that

f(x) = Zs(X) · g(X).

Suppose the verifier has a commitment to f. . To prove
that f is zero on S

,
we can

use the following protocol : ofdegree at most d-15)

1 . Prover commits to the polynomial q where f(X) : Is (X) · g(X)
2

.
Verifier samples a randomrTp

3. Prover opens commitments to f andqf at

4. Verifier checks that f(r)=Is (r)q(0)

To see why this is sound . Suppose f(X) is not zero on S
.

Then
,

there does not exist

a polynomial g(X) such that f(X) = Is (X) · g(X).

Consider the polynomial h(X) : = f(X) - Is (X) -g(X). This is a polynomial of degree at

most d and is not the zew polynomial. Thus
,
it has at mosta roots. Then,

Pry[kCr=0 = =n r
= 2s(r)g(t)

In the SNARG , the commitments are implemented usi KI6 polynomial commitments.

The randomnessr is derived using the random oracle (by hashing the input) - as

in Fiat-Shamir
.

Proof then consists of three group elements : commitment to g , openings for f anda



Back to PLONK. Prover commits to trace polynomial
T

.

1. Input consistency
: Suppose public input is X = (x1

, . .

.,
Xn). Then

,
the prover

should show that TSW-) = xi for all it InJ
.

To do so
, prover (and verified) interpolate polynomial

v(X) where v (wi ) = Xi

Then
,

the polynomial T(X)
- v(X) is zero on the set

s = 5w-
....,

w h3 .
Prover and the verifier now run the

above zero-testing protocol.

Note : In the zero-testing protocol , the prover needs to reveal

T(r) - v (r). It does so by revealing T(r) and

the verifier can then compute T(r)-v(r) itself.

2. Gate consistency : Define a selector polynomial v(X) where

v(w3l) = 1 if gate I is an addition gate
V(w39) = 0 if gate I is a multiplication gate

Suppose all the gates are implemented correctly :

- If gate I is an addition gate
: T(w31)+ T(w)+) = T(w)+2)

If gate I is a multiplication gate : T((39) · T(y31+) = T(wb+2)

This means for all XESwic3,..., w314-33
,

v(X) [T (X) + T(wX)] + (1-v(x) [T (X) . T(w X)) = T (w>X)

Reduces to zero-test protocol on the set <W% wh
...,

abK19
.

Note : To implement this protocol ,
verifier needs to evaluate polynomial

v(X) [T(X) + T(wX)) + ( - v(x)[T(x)T(wx)) - T (w>X)
at a random point r. This can be implemented using KI6 by
having prover open

T at
,

wr
,

and wor
.

Verifier can

compute v(r) itself.



3. Wire consistency :

left inout right input --ge -- output
1 1(w) 2 (w) 3 (w2)

2 2(c)) E (w4) 5 (w5)· 3 3 (w6) 5 (w) 15 (w8)

inputs : 1(2-1) 2 (2=) 3 (3)

In this example,
we would require that T(c") = T(wol

-

> (co-2) = T(w) = T(c Y)

T ( -3) = T (w4)
T (c2) = T(wb)
T(w3) = T(wY

Whenever a wire value is used multiple times
, we introduce a constraint.

Every wire value participates in at most one constraint group :
-°

W
- W "WOW'wiw* wS wow w8

-

--
We can view this "replication pattern" as inducing a permutation P on the set

40-3
,

w-2,
...,

w83. For each input ,
wi

, Plwi) sends it to is where j is the

index of the next copy of the wire associated with index i.

I can be described by a polynomial of degree 3m + R (just like i). Checking?

equality of the wire constraints then boils down to checking T(X) : T(P(X)

for all X- Sw", ...,
w3m3. The polynomial P is known to the verifier so

this can again be done using the zero-testing protocol.



Summary : To prove that C(X
, W) = 1

, prover commits to the execution trace T(X)

of C and then proves the following statements :

-

Input consistency Each proof requires revealing a constant number
- Gate consistency of group elements (i. .e.,

commitments + openings to
- Wire consistency & the polynomial commitment scheme)
-Output correctness

soundness requires random oracle (to make the interactive protocol non-interactive) and the

algebraic group
model (or generic group

model) to argue soundness of the KEG scheme

Many extensions : Can modify base protocol so prover complexity is quasi-linear in 1C

rather than quadratic
Can consider multivariate polynomials over FI to support linear-time

prover (HyperPlonk)
Can support more general gates by extending gate consistency checks


