Approach. composite-order pairing group.
Let $N=p q$ be a product of two large primes. N is pubic; p, q are secret.
Let b be a cyclic group of order p. Then $g_{p}:=g^{q}$ generates a subgroup of order p and $g_{q}:=g^{P}$ generates a subgroup of order q.
Boneh-Goh-Nissim:
Key Gen: Sample $N=p q$ and pairing group $\left(G, G_{T}, e\right)$ of order N.
Sample $x \leftarrow \underset{\sim}{\mathscr{Z}} \mathbb{Z}_{N}$. Let $h=g_{q}^{x}$. \longrightarrow both have order N
Output $p k=(g, h)$ and $s k=q$
Encrypt (pk, m): Sample $r \not \mathbb{R}^{\mathbb{R}} \mathbb{Z}_{N}$ and set $c t=h^{r} \cdot g^{m}$ (no need for g^{r})
$\operatorname{Decorypt}(s k, c t):$ Parse $s k=q$ and $c t=u$. Compute u and find m such that $g_{p}^{m}=u^{q}$.

Correctness: $\left(h^{r} \cdot g^{m}\right)^{q}=h^{r q} \cdot g^{m q}=g_{p}^{m}$
Additive homomorphism: $\left(h^{r_{1}} \cdot g^{m_{1}}\right)\left(h^{r_{2}} \cdot g^{m_{2}}\right)=\underbrace{h^{r_{1}+r_{2}} g^{m_{1}+m_{2}}}_{\text {encrypts } m_{1}+m_{2}}$
Multiplicative homomorphism: $e\left(h^{r_{1}} \cdot g^{m_{1}}, h^{r_{2}} \cdot g^{m_{2}}\right)$

$$
=\underbrace{e\left(h^{r_{1}}, h^{r_{2}} g^{m_{2}}\right) e\left(g^{m_{1}}, h^{r_{2}}\right) e\left(g^{m_{1}}, g^{m_{2}}\right)}_{\text {encrypts } m_{1} m_{2}}
$$

Security: relies on subgroup decision assumption
Hard to distinguish random element of subgroup from random element of full group:

$$
\left(g, g_{q}^{s}, g_{q}^{r}\right) \stackrel{c}{\approx}\left(g, g_{q}^{s}, g^{r}\right) \text { where } r, s \stackrel{R}{\leftarrow} \mathbb{Z}_{N}
$$

Non-interactive zero-knowledge (NI2K)
Zero-knowledge proofs: prove a statement x without revealing anymore about x other than fact that it is true

Syntax of NI2K proof system:

- Setup \rightarrow Outputs the common reference string (cos)
- Prove $(\operatorname{crs}, x, w) \rightarrow \pi:$ Geverates a proof that $x \in \mathcal{L}$
-Verity (crs, x, π) $\rightarrow 0 / 1$: Checks whether proof is valid or not

Requirements:

- Completeness: If $R(x, \omega)=1$, then

$$
\begin{aligned}
& \text { vars } \leftarrow \text { Setup } \\
& \pi \leftarrow \operatorname{Prove}(\operatorname{crs}, x, \omega)
\end{aligned} \Rightarrow \operatorname{Verity}(\operatorname{crs}, x, \pi)=1
$$

- Soundness: For all adversaries A :

$$
\operatorname{Pr}[x \notin \mathcal{L} \text { and Verity }(\text { cars }, x, \pi)=1: \quad \text { ers } \leftarrow, \pi) \leftarrow A(\text { Cots })]=\text { neg. } .
$$

If A must be efficient, then we obtain argument systems.

- Zero-knowledge: There exists an efficient simulator $S=\left(S_{0}, S_{1}\right)$ where for all efficient adversaries $A,\left|\omega_{0}-W_{1}\right|=$ neg \mid. where W_{0} and W_{1} are defined as follows:
Real distribution: $W_{0}=\operatorname{Pr}\left[A^{O_{0}(c r s, \cdot, \cdot)}(\right.$ cos $)=1:$ ers \leftarrow Setup $]$
Simulated distribution: $W_{1}=\operatorname{Pr}\left[A^{O_{1}(s t,-, \cdot)}(\right.$ crs $)=1:($ rs, st $\left.) \leftarrow S_{0}\right]$ and $\begin{aligned} & \left.O_{0}(\operatorname{crs}, x, w) \text { outputs Prove }(\omega r s, x, w) \text { if } R(x, w)=1\right]^{\text {and }} \perp 1 \\ & \left.O_{1} \text { (s ten }, x, w\right) \text { outputs } S_{1}(s t, x, w) \text { if } R(x, w)=1\end{aligned}$ O_{1} (st, $\left.x, w\right)$ outputs $S_{1}(s t, x, w)$ if $R(x, w)=1$

Take an NP relation R. Let C be the circuit that computes R. if $x \in \mathcal{L}$, then there exists some w such that $C(x, w)=1$.

Groth-Ostrously-Sahai (GOS) construction:

1. "Commit" to all of the wire valuer in the circuit
2. Prove that each output wire is the NAND of the infect wires.
3. Open the output wire to a 1 (and the input wires associated with the statement)
