Approach. comparite-order pairing group.
Let N=pg be a product of two large primes. N is public; pg are seed
Let B be a cyclic group of order N. Then
$$g_{p} := g^{g}$$
 generates a
subgroup of order p and $g_{g} := g^{p}$ generates a subgroup of order Q.
Bonch- Boh- Nissim:
KeyGen: Sample N=pg and pairing group (G, G, G_{T} , e) of order N.
Sample $\chi \notin \mathbb{Z}_{N}$. Let $h = g_{g}^{\chi}$
Dutput $pk = (g, h)$ and $sk = g$
Encrypt (pk, m): Sample $r \notin \mathbb{Z}_{N}$ and set $ct = h^{n} \cdot g^{m}$ (no neak for g^{n})
Decrypt (sk, ct): Porse sk = g and $ct = u$. Compute u^{g} and find
m such that $g_{p}^{m} = u^{g}$.
Correctionss: $(h^{n} \cdot g^{m})^{g} = h^{rg} \cdot g^{mg} = u^{g}$.
Additive homomorphism: $(h^{r_{1}} \cdot g^{m_{1}})(h^{r_{2}} \cdot g^{m_{2}}) = h^{r_{1}+r_{2}} g^{m_{1}+m_{2}}$
encrypts $m, + m_{2}$.

Security: relies on subgroup decision assumption

Hard to distinguish random element of subgroup from random element
of full group:
$$(g, g_g^s, g_g^r) \approx (g, g_z^s, g^r)$$
 where $r, s \in \mathbb{Z}_N$

Non-interactive zero-knowledge (NIZK)

Zero-knowledge proofs: prove a statement X without revealing anymore about X other than fact that it is true

Syntax of NI2K proof system:
- Setup
$$\longrightarrow$$
 Outputs the common reference string (crs)
- Prove (crs, x, w) \longrightarrow T: Generates a proof that x6L

-Verify (crs, x, π) $\rightarrow 0/1$: Checks whether proof is valid or not

- Completeness: If
$$R(x, \omega) = 1$$
, then
 $crs \leftarrow Setup$
 $\pi \leftarrow Prove(crs, x, w)$ \Longrightarrow Verify $(crs, x, \pi) = 1$
 $\pi \leftarrow Prove(crs, x, w)$
- Soundness \cdot For all adversaries A :
 $crs \leftarrow Setup$
 $Pr [x \notin L$ and Verify $(crs, x, \pi) = 1 : (x, \pi) \leftarrow A(crs)] = reg!$
If A must be efficient, then we obtain argument systems.
- Zero-knowledge: There exists an efficient simulator $S = (So, S_1)$ where
for all efficient adversaries A , $|Wo-W|^2$ reg!
 $where Wo and W$, are defined as follows:
Real distribution: $Wo = Pr [A^O(crs, \cdot, \cdot) (crs) = 1 : crs \leftarrow Setup]$
Simulated distribution: $W_1 = Pr [A^O(crs, \cdot, \cdot) (crs) = 1 : (crs, st) \leftarrow S_0]$
and $O_0(crs, x, w)$ outputs $Prove(crs, x, w)$ if $R(x, \omega) = 1$ otherwise
 $O_1(St, x, w)$ autputs $S_1(st, x, w)$ if $R(tx, \omega) = 1$ otherwise
 $Take$ an NP relation R . Let C be the arcuit that computes R .
if $x \in L$, then there exists some we such that $C(x, w) = 1$.
Groth-Oshrousky-Schui (GOS) construction:
 I . "Connit" to all of the wire wakes in the circuit
 2 Powe that fourt wire is the NPAD of the heart wires.

3. Open the output wire to a 1 (and the input wires as sociated with the statement)