
CS 395T: Topics in Cryptography Spring 2024

Exercise Set 6

Due: April 17, 2024 at 11:59pm (Submit on Gradescope) Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:

https://www.cs.utexas.edu/~dwu4/courses/sp24/static/homework.tex

You must submit your problem set via Gradescope (accessible through Canvas).

Collaboration Policy. You may discuss your general approach with other students, but you may not share written
documents. You should not search online for solutions to these problems. If you do consult external sources, you
must cite them in your submission. You must include the names of all of your collaborators with your submission.
Refer to the official course policies for the full details.

Problem 1: Regev Encryption [20 points]. In lecture, we described Regev encryption in the setting where the
message is encoded in the most significant bits of the ciphertext. Here, we will consider a variant where the message
is encoded in the least significant bits of the ciphertext. For simplicity, we will just consider the symmetric setting
(but everything generalizes to the public-key setting in the manner described in lecture). Let the message space be
Zp , n be the lattice dimension, q be the modulus, and χ be the error distribution. Suppose that gcd(p, q) = 1. Note
that p and q need not be prime here.

• The secret key is a vector s R←Zn
q .

• To encrypt a message µ ∈Zp , sample a R←Zn
q and e ←χ, and output the ciphertext ct= (a,sTa+pe +µ).

(a) Given a ciphertext ct and the secret key s, describe the decryption algorithm. Prove correctness of the encryp-
tion scheme with your choice of decryption algorithm. You may assume that Pr[e ←χ : |e| < q/(2p)−1] = 1.

(b) Show that under the LWEn,m,q,χ assumption, the above encryption scheme is CPA-secure against an adversary
that makes at most m encryption queries. Hint: It suffices to show that the ciphertexts in this scheme are
pseudorandom (computationally indistinguishable from a random string). You can use without proof that an
encryption scheme with pseudorandom ciphertexts is CPA-secure.

This version of Regev encryption can also be extended to obtain an FHE scheme. One advantage of this construction
over the GSW construction described in class is that the ciphertexts are vectors rather than matrices. The challenge
problem will walk through how to derive this alternative approach to constructing FHE.

Optional Feedback. Please answer the following optional questions to help design future exercise sets. You do
not need to answer these questions. However, we do encourage you to provide us feedback on how to improve the
course experience.

(a) How long did you spend on this exercise set?

(b) Do you have any feedback for this exercise set?

(c) Do you have any feedback on the course so far?

(d) Are there specific topics that you are interested in seeing in this course?

https://www.cs.utexas.edu/~dwu4/courses/sp24/static/homework.tex
https://gradescope.com/
https://canvas.utexas.edu/
https://www.cs.utexas.edu/~dwu4/courses/sp24/info.html


Challenge Problem: Key Switching in Regev Encryption [Optional]. Let n be the lattice dimension, q be an odd
modulus, and χ be a B-bounded distribution over Zq (where B = poly(n, log q)). Let sT = [−s̃T | 1] ∈Zn+1

q be a secret
key for a Regev encryption scheme. As in the previous problem, we encode the message in the least significant bit of
the ciphertext. Namely, we say that c ∈Zn+1

q is an encryption of µ ∈ {0,1} if sTc =µ+2e for some small e.

(a) Let tT = [−t̃T | 1] ∈ Zn′+1
q for some n′ ∈ N. Your goal in this problem is to construct a method that publicly

translates a ciphertext encrypted under t to a ciphertext under s. We first define a GenKeySwitch algorithm:

• GenKeySwitch(s,t) → W: On input s ∈Zn+1
q and t ∈Zn′+1

q , the key-switching setup algorithm outputs a

key-switching matrix W ∈Z(n+1)×m′
q where m′ = (n′+1)⌈log q⌉.

Suppose W ←GenKeySwitch(s,t). Then the following properties should hold:

• If tTc =µ+2e mod q , then sTWg−1(c) =µ+2e ′ mod q where |e ′| ≤ |e|+poly(n,n′, log q).

• If s̃ R←Zn
q , then the key-switching matrix W output by Setup is pseudorandom assuming LWEn,n′,q,χ.

Prove that your scheme satisfies both of these properties. Your construction essentially shows how to transform
a ciphertext c ∈ Zn′+1

q under any key t ∈ Zn′+1
q to a new ciphertext under s. Hint: You may use the fact that

(tT⊗g) ·g−1(c) = tTc. (You should convince yourself that this is true).

(b) Suppose you have two Regev ciphertexts c1,c2 encrypting µ1 and µ2 under s ∈Zn+1
q with error magnitude at

most e. Using the key-switching procedure defined above, show how to publicly and efficiently compute a
Regev encryption c× of the product µ1µ2 under a suitably-chosen target key t ∈Zn+1

q . Note that s and t have the

same dimension. The error in c× should be bounded by O(e2)+poly(n, log q). In this setting, the public key
would include a suitably-chosen key-switching matrix. Semantic security of the encryption scheme should
still reduce to the LWE assumption. Hint: Use the following special case of the mixed product rule for tensor
products: for all u1,v1,u2,v2 ∈Zn

q , (u1 ⊗u2)T(v1 ⊗v2) = (uT
1 v1)(uT

2 v2).

(c) In one sentence, explain how you can extend the above procedure to support any (bounded) number of
multiplications. You may make a circular security assumption.

Challenge Problem: ℓ-Succinct SIS and SIS [Optional]. Recall that the ℓ-succinct SIS problem says that SIS is
hard with respect to A R←Zn×m

q given a trapdoor for the matrix

Bℓ =

A W1

. . .
...

A Wℓ

 ,

where W1, . . . ,Wℓ
R←Zn×t

q . Recall that a trapdoor for Bℓ is a short matrix R where BℓR = G. For the applications to
functional commitments (i.e., succinct homomorphic commitments), we set t = m (independent of ℓ). Show that
when t =Ω(ℓn log q), hardness of vanilla SIS implies the hardness of ℓ-succinct SIS (with comparable parameters).
An interesting open problem is to show such a comparable implication when t ≪ ℓ.


