
New Constructions of Reusable Designated-Verifier NIZKs

Alex Lombardi
MIT∗

Willy Quach
Northeastern University†

Ron D. Rothblum
Technion‡

Daniel Wichs
Northeastern University§

David J. Wu
University of Virginia¶

Abstract

Non-interactive zero-knowledge arguments (NIZKs) for NP are an important cryptographic
primitive, but we currently only have instantiations under a few specific assumptions. Notably,
we are missing constructions from the learning with errors (LWE) assumption, the Diffie-Hellman
(CDH/DDH) assumption, and the learning parity with noise (LPN) assumption.

In this paper, we study a relaxation of NIZKs to the designated-verifier setting (DV-NIZK),
where a trusted setup generates a common reference string together with a secret key for the
verifier. We want reusable schemes, which allow the verifier to reuse the secret key to verify many
different proofs, and soundness should hold even if the malicious prover learns whether various
proofs are accepted or rejected. Such reusable DV-NIZKs were recently constructed under the
CDH assumption, but it was open whether they can also be constructed under LWE or LPN.

We also consider an extension of reusable DV-NIZKs to the malicious designated-verifier
setting (MDV-NIZK). In this setting, the only trusted setup consists of a common random string.
However, there is also an additional untrusted setup in which the verifier chooses a public/secret
key needed to generate/verify proofs, respectively. We require that zero-knowledge holds even if
the public key is chosen maliciously by the verifier. Such reusable MDV-NIZKs were recently
constructed under the “one-more CDH” assumption, but constructions under CDH/LWE/LPN
remained open.

In this work, we give new constructions of (reusable) DV-NIZKs and MDV-NIZKs using
generic primitives that can be instantiated under CDH, LWE, or LPN.

1 Introduction

Zero-knowledge proofs [GMR89] allow a prover to convince a verifier that a statement is true without
revealing anything beyond this fact. While standard zero-knowledge proof systems are interactive,
Blum, Feldman, and Micali [BFM88] introduced the concept of a non-interactive zero-knowledge

∗Email: alexjl@mit.edu. Research supported in part by an NDSEG fellowship. Research supported in part by
NSF Grants CNS-1350619 and CNS-1414119, and by the Defense Advanced Research Projects Agency (DARPA) and
the U.S. Army Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236.
†Email: quach.w@husky.neu.edu.
‡Email: rothblum@cs.technion.ac.il. Supported in part by the Israeli Science Foundation (Grant No. 1262/18)

and the Technion Hiroshi Fujiwara cyber security research center and the Israel cyber directorate.
§Email: wichs@ccs.neu.edu. Research supported by NSF grants CNS-1314722, CNS-1413964, CNS-1750795 and

the Alfred P. Sloan Research Fellowship.
¶Email: dwu4@virginia.edu. Part of this work was done while visiting the Technion.

1

mailto:alexjl@mit.edu
mailto:quach.w@husky.neu.edu
mailto:rothblum@cs.technion.ac.il
mailto:wichs@ccs.neu.edu
mailto:dwu4@virginia.edu

(NIZK) proof, which consists of a single message sent by the prover to the verifier. Although such
NIZKs cannot exist in the plain model, they are realizable in the common reference string (CRS)
model, where a trusted third party generates and publishes a common reference string chosen either
uniformly random or from some specified distribution. We currently have NIZKs for general NP
languages under several specific assumptions, such as: (doubly-enhanced) trapdoor permutations,
which can be instantiated from factoring [BFM88, SMP87, FLS99, SCO+01, Gol11], the Diffie-
Hellman assumption over bilinear groups [CHK03, GOS06], optimal hardness of the learning with
errors (LWE) assumption1 [CCH+18], and circular-secure fully homomorphic encryption [CLW18].
We also have such NIZKs in the random-oracle model [FS86]. However, we are lacking constructions
from several standard assumptions, most notably the computational or decisional Diffie-Hellman
assumptions (CDH, DDH), the plain learning with errors (LWE) assumption, and the learning
parity with noise (LPN) assumption.

Designated-verifier NIZK. We consider a relaxation of NIZKs to the designated-verifier model
(DV-NIZK). In this model, a trusted third party generates a CRS together with a secret key, which
is given to the verifier and is used to verify proofs. Throughout this work, we focus on the problem
of achieving reusable (i.e., multi-theorem) security. This means that soundness should hold even if
the scheme is used multiple times and a malicious prover can test whether the verifier accepts or
rejects various proofs.

While reusable DV-NIZKs appear to be a non-trivial relaxation of standard NIZKs,2 we did
not (until recently) have any constructions of such DV-NIZKs under assumptions not known to
imply standard NIZKs. Very recently, the works of [CH19, KNYY19, QRW19] constructed such
DV-NIZKs under the CDH assumption. However, it was left as an open problem whether such
DV-NIZKs can be constructed under LWE or LPN.

We note that the work [KW18a] constructed an orthogonal notion of reusable “designated-prover”
NIZKs (DP-NIZK) under LWE, where the trusted third party generates a CRS together with a
secret key that is given to the prover and needed to generate proofs. In addition, the work [BCGI18]
constructed “preprocessing NIZKs” (PP-NIZK), in which the trusted third party generates both a
secret proving key and a secret verification key, under variants of the LPN assumption over large
fields.

Malicious-designated-verifier NIZK. We also consider a strengthening of DV-NIZKs to the
malicious-designated-verifier model (MDV-NIZKs) introduced by [QRW19]. In this model, a trusted
party only generates a common uniformly random string. The verifier can then choose a public/secret
key pair, which is used to generate/verify proofs, respectively. Soundness is required to hold when
the verifier generates these keys honestly, while zero-knowledge is required to hold even when the
verifier may generate the public key maliciously. MDV-NIZKs can equivalently be thought of as
2-round zero-knowledge protocols in the common random string model, in which the verifier’s
first-round message is reusable; namely, the public key chosen by the verifier can be thought of as a
first-round message.

Very recently, the work of [QRW19] showed how to construct such MDV-NIZKs under the
“one-more CDH assumption.” This is an interactive assumption that has received much less scrutiny
than standard CDH/DDH.

1This means that no polynomial-time attacker can break LWE with any probability better than random guessing.
2The public verifiability of traditional NIZKs immediately implies reusable soundness.

2

1.1 Our Results

In this work, we propose a framework for constructing reusable DV-NIZKs from generic assumptions.
One instantiation of this framework yields reusable DV-NIZKs generically from any public-key
encryption together with a secret-key encryption scheme satisfying a weak form of key-dependent
message (KDM) security. Both components can be instantiated under any of the CDH/LWE/LPN
assumptions, so we obtain constructions of DV-NIZKs under these assumptions. In particular, we
obtain the following theorem:

Theorem 1.1 (informal). Assuming the existence of public-key encryption and secret-key encryption
that is KDM-secure with respect to projections (see Definition 2.24), there exist reusable designated-
verifier NIZK arguments for NP. In particular, there exist reusable DV-NIZKs under either the
CDH assumption, the LWE assumption, or the LPN assumption with noise rate O(1√

n
).

We then show how to construct reusable malicious DV-NIZKs from any (receiver-extractable)
2-round oblivious transfer (OT) in the common random string model and the same form of KDM-
secure SKE. This yields instantiations of MDV-NIZKs under the CDH/LWE/LPN assumptions
using the OT constructions of [PVW08, DGH+19], as summarized by the following theorem.

Theorem 1.2 (informal). Assuming the existence of “receiver-extractable 2-message OT” (see
Definition 2.14) and secret-key encryption that is KDM-secure with respect to projections, there exist
reusable malicious designated-verifier NIZK arguments for NP. In particular, there exist reusable
MDV-NIZKs under the CDH assumption, the LWE assumption, or the LPN assumption with noise
rate n−(

1
2
+ε) for any ε > 0.

More generally, we give a compiler converting any Σ-protocol (or even more generally, any
“zero-knowledge PCP” [KPT97, IMS12]) into a DV-NIZK using a form of single-key attribute-
based encryption (ABE) satisfying a certain “function-hiding (under decryption queries)” property.
Collusion-resistant ABE is only known from specific algebraic assumptions over bilinear maps [SW05,
GPSW06] or lattices [GVW13, BGG+14], but single-key ABE can be constructed from any public-
key encryption scheme [SS10, GVW12]. While we are unable to construct our variant of ABE (i.e.,
one that satisfies our function-hiding property) from an arbitrary public-key encryption (PKE)
scheme, we show how to construct it by additionally relying on KDM-secure SKE, using a technique
recently developed in [KW18b, KMT19]. However, in addition to this construction, we outline an
alternate approach for building single-key ABE with our function-hiding property (using the standard
lattice-based ABE [BGG+14]) in Appendix C. As a result, we believe that our new notion may be
helpful in order to construct DV-NIZKs from other assumptions in the future. Note that if one could
construct DV-NIZKs from any semantically-secure PKE scheme, it would show that semantically-
secure PKE generically implies CCA-secure PKE (via the Naor-Yung paradigm [NY90]), which
would resolve a major long-standing open problem. More modestly, one could hope to construct
DV-NIZKs generically from any CCA-2 secure encryption. Our techniques may offer some hope
towards realizing these exciting possibilities.

Our techniques depart significantly from the prior constructions of DV-NIZKs and MDV-NIZKs in
[CH19, KNYY19, QRW19]. In particular, those works relied on the hidden-bits model from [FLS99]
and used a variant of the Cramer-Shoup hash-proof system under CDH [CS98, CS02] to instantiate
the hidden bits for a designated verifier. Unfortunately, we do not have good hash-proof systems
under LWE/LPN and so it does not appear that these techniques can be used when starting from
“noisy assumptions” (among other concerns). As we describe below, we take a vastly different

3

approach and do not rely on the hidden bits model. One disadvantage of our results is that, while
[CH19, KNYY19, QRW19] achieve statistically sound (M)DV-NIZK proofs, we only get argument
systems with computational soundness.3

Application to reusable non-interactive secure computation. We note that MDV-NIZKs
can be used to obtain new solutions to the problem of reusable non-interactive secure computation
(rNISC) [CDI+19]. In this setting, there is a public function f and a receiver (Rachel) publishes
a “query” using her secret input x. Later a sender (Sam) can send a “response” using his secret
input y and ensure that Rachel only learns f(x, y). We further want Rachel’s query to be reusable
so that Sam can send many different responses with various values yi and have Rachel learn f(x, yi)
without compromising security. The main difficulty is that a malicious Sam can send malformed
responses and, by observing whether Rachel aborts or not, can potentially learn information about
her input x. Previously, we had instantiations of rNISC (in the CRS model) using 2-round (malicious)
oblivious transfer (OT) and NIZKs, or more recently, via a black-box use of oblivious linear-function
evaluation (OLE) [CDI+19]. However, we had no constructions under many standard assumptions,
including any of CDH/DDH, LPN or LWE. It turns out that we can easily use MDV-NIZKs instead
of standard NIZKs (along with 2-round malicious OT) to solve this problem. In particular, Rachel
sends OT queries corresponding to her input x as well as the public-key of an MDV-NIZK. Sam then
creates a garbled circuit for f(·, y) with his input y hard-coded, and sends the labels via the OT
responses; in addition he encrypts y (under a public key in the CRS) and proves that he computed
the garbled circuit and the OT responses correctly and consistently with the encrypted y. We can
simulate Sam’s view (including Rachel’s output) by checking the MDV-NIZK to decide if Rachel
aborts or not; if the MDV-NIZK verifies then we can extract y from the encryption and be sure
that Rachel correctly outputs f(x, y). Using our instantiations of MDV-NIZKs along with known
constructions of 2-round OT from [PVW08, DGH+19], we get instantiations of rNISC under CDH,
LPN or LWE.

1.2 Recent Related Work

NIZKs from LWE. In a concurrent and independent work, Peikert and Shiehian [PS19] construct
NIZKs from the plain LWE assumption, which in particular yields reusable (M)DV-NIZKs from
LWE. While the [PS19] NIZK has the major advantage of being publicly verifiable, we note that our
usage of LWE only relies on plain Regev (public-key) encryption [Reg05] rather than more complex
lattice-based primitives.

KDM-Secure SKE and hinting PRGs. A preliminary version of this work [LQR+19] relied
on hinting PRGs [KW18b] rather than KDM-secure SKE in the statement of our main results
(Theorem 1.1 and Theorem 1.2). In a concurrent work, Kitagawa, Matsuda and Tanaka [KMT19]
modify the “signaling technique” of [KW18b] with the goal of constructing CCA-secure encryption
(similarly to [KW18b]). The [KMT19] modification of [KW18b] can be plugged into our construction
of (M)DV-NIZKs to obtain our LPN-based instantiation of DV-NIZKs (in addition to our original
CDH-based and LWE-based instantiations). We have updated our paper to reflect this improved
result.

In addition, shortly after our update, Kitagawa and Matsuda [KM19] independently noted the
same combination of [LQR+19] and [KMT19] within a follow-up work.

3Our construction is also computational zero-knowledge. None of the recent constructions of DV-NIZKs satisfy
statistical zero knowledge.

4

2-Message OT from CDH/LPN. In another concurrent work, Döttling, Garg, Hajiabadi,
Masny, and Wichs [DGH+19] construct 2-round OT from the CDH/LPN assumptions. Their
construction can be directly combined with our generic transformations, yielding the CDH/LPN-
based instantiations of MDV-NIZKs in this updated version of our paper (in addition to our original
DDH-based and LWE-based instantiations).

1.3 Our Techniques

Our approach starts with the construction of non-reusable DV-NIZKs from any public-key encryption,
due to Pass, shelat, and Vaikuntanathan [PsV06]. The [PsV06] construction relies on a Σ-protocol
[CDS94] with 1-bit challenges for an NP-complete language, such as Blum’s protocol for graph
Hamiltonicity [Blu86]. Recall that a Σ-protocol is a 3-round protocol, where the prover sends a
value a, the challenger chooses a bit b ∈ {0, 1}, and the prover replies with a response z; the verifier
checks the validity of the transcript (a, b, z) at the end. The protocol should have special soundness
(if there are two accepting transcripts (a, 0, z0), (a, 1, z1) with the same a then the statement must
be true) and special honest-verifier zero-knowledge (given b ahead of time, we can simulate the
transcript (a, b, z) without knowing a witness). The scheme also relies on a public-key encryption
scheme PKE. The non-reusable DV-NIZK of [PsV06] is defined by invoking λ (security parameter)
independent copies of the following base scheme in parallel:

• Setup: The common reference string consists of PKE public keys, (pk0, pk1). The verifier’s
secret verification key (b, skb) consists of a random bit b along with the secret key skb for the
corresponding public key pkb.

• Proof generation: On input a statement x and a witness w, the prover P first computes
the first message a of the Σ-protocol. Then, the prover computes responses (z0, z1) for both
possible challenge bits b ∈ {0, 1}, respectively, and outputs (a, ct0 = Encrypt(pk0, z0), ct1 =
Encrypt(pk1, z1)).

• Proof verification: Given a proof (a, ct0, ct1), and verification key (b, skb), the verifier
computes z = Decrypt(skb, ctb) and accepts if and only if (a, b, z) is a valid transcript.

Zero-knowledge of the DV-NIZK holds because the simulator knows the bits b of the verifier in
each invocation and can therefore simulate the Σ-protocol transcripts (a, b, zb) without knowing a
witness. It can create the ciphertext ctb by encrypting zb and can put an arbitrary dummy value in
the “other” ciphertext ct1−b; this is indistinguishable by the security of the encryption.

Non-reusable soundness of the DV-NIZK follows from the special soundness of the Σ-protocol.
If the statement is false then, for each a, there is only one challenge bit b that has a valid response
z, and therefore the prover would have to correctly guess the bit b in each of the λ invocations of
the above base protocol. This can only happen with negligible probability.

Unfortunately, as noted in [PsV06], the soundness of this scheme is completely broken if the
prover is allowed to query a verification oracle to test whether arbitrary proofs accept or reject—by
creating a proof of a true statement and putting an incorrect value in (say) the ciphertext ct0 of
the ith copy of the protocol, the adversary learns the verifier’s bit b in the ith copy after learning
whether the proof accepts or rejects. The adversary can eventually recover all of the verifier’s bits b
this way and, once it does so, it is easy to construct a valid proof of a false statement by using the
Σ-protocol simulator to generate valid transcripts (a, b, zb).

5

To overcome this problem, we replace the use of public-key encryption with a form of attribute-
based encryption, so that every instance x yields a different sequence of challenge bits b associated
to it.

Function-hiding ABE. The main tool that we use in this work is a variant of single-key ABE satisfy-
ing a certain function-hiding property. Recall that an ABE scheme (Setup,KeyGen,Encrypt,Decrypt)
allows for the encryption of a message m under public parameters pp with respect to an attribute x
resulting in a ciphertext ct. The ciphertext ct can be decrypted using a secret key skf associated
with a function f and the message m is recovered if f(x) = 1. On the other hand, if f(x) = 0, then
semantic security holds and nothing about the message is revealed even given skf . In this work,
we focus on schemes satisfying semantic security in the presence of a single secret key skf ; ABE
schemes satisfying single-key security can be constructed from any public-key encryption scheme
[SS10, GVW12].

The function-hiding property we consider in this work requires that for any function f , oracle
access to the decryption oracle Decrypt(skf , ·) does not reveal anything about the function f beyond
whether skf was qualified to decrypt the ciphertexts in question. More formally, we consider schemes
where the attribute x is given in the clear as part of the ciphertext ct, and require that an oracle
call of the form Decrypt(skf , ct) can be simulated using the master secret key msk along with the
value f(x), but without any additional knowledge of f .

At first glance, this property seems closely related to the standard notion of CCA-security, in
which access to a decryption oracle does not compromise semantic security. However, these two
notions appear to be incomparable. In particular, function-hiding can hold even if access to the
decryption oracle completely breaks semantic security while CCA-2 security can hold even if access
to the decryption oracle completely reveals the function f . Nonetheless, we observe that some of
the techniques previously developed for obtaining CCA-security are also useful for obtaining our
form of function-hiding.

Given this notion, our main contributions can be broken down into two steps: (1) showing
that function-hiding ABE yields DV-NIZKs, and (2) giving constructions of function-hiding ABE.
With respect to (1), we note that assuming the existence of public-key encryption, our notion of
function-hiding ABE is actually equivalent to DV-NIZKs for NP; we show the converse to (1) in
Appendix D.

The compiler. Here, we describe a simplified version of our DV-NIZK protocol using three main
ingredients:

• A Σ-protocol [CDS94] with 1-bit challenges for an NP-complete language L, such as Blum’s
protocol for graph Hamiltonicity [Blu86]. (In Section 4, we describe our compiler more
generally in the language of zero-knowledge PCPs, which can be instantiated via Σ-protocols
as a special case).

• An ABE scheme ABE = (Setup,KeyGen,Encrypt,Decrypt) satisfying single-key security and
function-hiding as described above. (In Section 4, we describe our compiler more generally
using a new primitive called attribute-based secure function evaluation (AB-SFE), for which
ABE is a special case).

• A pseudorandom function PRF that can be evaluated by ABE. In this simplified scheme, it
suffices for PRF to output a single bit. (In Section 4, we describe our compiler by reusing the

6

same PRF and ABE parameters across invocations, while here we apply parallel repetition of
completely independent schemes).

Our DV-NIZK protocol is defined by invoking λ (security parameter) independent copies of the
following base scheme in parallel.

• Setup: The common reference string consists of the public parameters pp for ABE. The
verifier’s secret verification key (k, skf) consists of a PRF key k along with an ABE secret key
skf for evaluating the function

f(x, b) = 1 ⇐⇒ PRF(k, x) = b.

• Proof generation: On input a statement x and a witness w, the prover P computes the first
message a in the Σ-protocol. Then, the prover computes responses (z0, z1) for both possible
challenge bits b ∈ {0, 1}, respectively, and computes an ABE encryption of zb with respect to
attribute (x, b). This yields ciphertexts (ct0, ct1); the prover sends (a, ct0, ct1) to the verifier.

• Proof verification: The verifier first computes y = PRF(k, x). Then, the verifier decrypts
cty using its secret verification key skf to obtain the prover’s response zy. Finally, the verifier
checks that the proof (a, y, zy) is valid and accepts if this is the case.

We claim that the DV-NIZK is reusably sound. Consider any fixed statement4 x 6∈ L and an
adversary that makes arbitrary verification queries and eventually produces an accepting proof for
x. First, without loss of generality, we claim that we can consider an adversary that never makes
a verification query on x itself; if an adversary had a non-negligible probability of making such a
query and getting an accepting response then it would be able to win the game without making
the query! Second, we claim that the challenges y = PRF(k, x) for each invocation, which are used
when verifying the adversary’s final proof for x, are pseudorandom from the prover’s perspective.
This holds even if the prover is given oracle access to the verifier on all statements x′ 6= x since, by
the function-hiding of ABE, these queries can be simulated given only the values PRF(k, x′) without
revealing any additional info about k. But, by the special soundness of the Σ-protocol, the only
way that the adversary can produce an accepting proof would be to guess all of the values y used in
each of the λ invocations, which only happens with negligible probability.

Moreover, we claim that the DV-NIZK is zero-knowledge. In an honestly-generated proof
π = (a, ct0, ct1), on instance x, the verifier can compute the response zy for y = PRF(k, x), but
the response z1−y is computationally hidden by semantic security of ABE. This means that π
can be simulated given only (k, (a, zy)), which is in turn simulatable given only x by the special
honest-verifier zero-knowledge of the Σ-protocol.

We provide the formal description of our compiler in Section 4.

Constructing function-hiding ABE. We now describe two ways5 to construct a (single-key)
ABE scheme that satisfies our function-hiding property. Combined with our compiler above, this
suffices to construct DV-NIZKs (i.e., the results from Theorem 1.1). In the body of the paper, we

4This suffices for non-adaptive soundness. Adaptive soundness (in which the cheating prover is allowed to adaptively
select a false statement x 6∈ L after seeing the common reference string) can be achieved either by complexity
leveraging [BB04] (see Remark 2.6) or by relying on a trapdoor Σ-protocol [CLW18] (see Remark 4.4).

5We refer to a previous version of this work [LQR+19] for an additional approach based on lossy trapdoor functions.

7

will focus on the second candidate based on KDM-secure SKE for two main reasons: (1) it enables
instantiations from CDH/LWE/LPN (and correspondingly, DV-NIZKs from these assumptions);
and (2) it readily generalizes to notions beyond ABE, which as we discuss in greater detail below,
enables constructions of MDV-NIZKs from CDH/LWE/LPN.

• Lattice-based ABE: First, we observe that a simple variant of the lattice-based ABE
construction from [BGG+14] satisfies our notion of function-hiding. Namely, we can modify
the construction [BGG+14] so that the decryption algorithm (with either the master secret key
or a function key) can fully recover the encryption randomness used to construct a particular
ciphertext, and in doing so, verify that a ciphertext is well-formed (i.e., could be output by
the honest encryption algorithm). If the scheme supports this randomness recovery property,
function-privacy essentially follows from (perfect) correctness of the underlying scheme. This
high-level idea of leveraging randomness recovery is a common theme in our constructions.
We provide additional details in Appendix C.

• PKE and KDM-secure SKE: Following the approach of [KW18b, KMT19], we show that
any single-key ABE scheme can be used to construct an ABE scheme satisfying function-
hiding with respect to decryption queries. The amplification procedure additionally requires
the existence of a secret-key encryption scheme SKE that is KDM-secure for a simple class
of functions. As shown in [BHHO08, ACPS09, DG17, BLSV18, DGHM18], such secret-key
encryption schemes can be constructed from the CDH/LWE/LPN assumptions, and hence,
give instantiations of function-hiding ABE from CDH/LWE/LPN.

In fact, the exact construction of CCA-secure ABE in [KW18b] (and the modification intro-
duced in [KMT19]) can also be shown to satisfy function-hiding. However, as noted above,
CCA-security does not generically imply our notion of function-hiding or vice versa. In this
work, we describe a simplified variant of the [KMT19] compiler that suffices to construct
function-hiding ABE and then analyze its security.

We now provide a description of (our simplification of) the [KW18b, KMT19] construction.
Take any (single-key) ABE scheme ABE, a secret-key encryption scheme SKE, a public-key
encryption scheme PKE, an equivocable commitment scheme Com, and consider the following
modified ABE scheme:

– Public parameters: ABE public parameters pp, PKE public key pk, and commitment
common reference string crs.

– Key generation: This is unmodified from ABE: an ABE master secret key is used to
generate keys skf associated to functions f .

– Encryption algorithm: On input the public parameters (pp, pk, crs), an attribute x
and a message m:

1. Sample a SKE secret key s← {0, 1}λ.

2. Sample random strings ρi (for i ∈ [λ]) and Ri,b (for i ∈ [λ], b ∈ {0, 1}).
3. Output commitments comi = Com(crs, si; ρi) to the bits of the secret key s, a “joint

encryption matrix” M = {cti,b}i∈[λ],b∈{0,1} consisting of λ ABE ciphertexts and
λ PKE ciphertexts using the strings Ri,b as encryption randomness. Lastly, also
output a symmetric encryption ct0 ← SKE.Encrypt(s,m‖{Ri,si}i∈[λ]) of the message

8

m concatenated with a subset of {Ri,b} corresponding to the bits of s (using fresh
encryption randomness).

We now elaborate on the ciphertexts cti,b:

∗ For every index i ∈ [λ], cti,0 is an ABE ciphertext computed using (pp, x) and
randomness Ri,0, while cti,1 is a PKE ciphertext computed using pk and randomness
Ri,1.

∗ As for the underlying messages: for every index i ∈ [λ], cti,si is an encryption of ρi,
while cti,1−si is an encryption of ⊥ (a dummy message).

Following [KW18b, KMT19], we provide some high-level intuition for this encryption algorithm.
For a fixed pair (i, b), call a ciphertext cti,b “good” with respect to commitment comi if there
exists commitment randomness ρi such that comi = Com(crs, b; ρi) and cti,b is a well-formed
encryption of ρi. Then, given a qualified secret key skf , an honestly-generated matrix
M = {cti,b} encodes the SKE-secret key s: we have si = b if and only if cti,b is “good,” so si
can be identified by decrypting cti,0 (using skf) and checking whether the underlying message
is ⊥.6

Moreover, the binding property of the commitment scheme Com guarantees that for every
(i, comi, cti,0, cti,1), there is at most one bit b such that cti,b is “good”; in other words, even
malformed ciphertexts encode at most one secret key s. This introduces enough redundancy
in the scheme so that CCA-like security properties can be guaranteed without the decryption
procedure fully recovering the encryption randomness. In particular, the randomness {Ri,1−si}
can be left unrecoverable (even given a qualified key skf), which is what allows for a proof of
semantic security.

We leave a detailed discussion of the decryption algorithm to Section 5, but decryption roughly
proceeds by recovering some of the overall encryption randomness (using skf)—namely,
(s, ρ, {Ri,si}i∈[λ])— and then checking that each ciphertext of the form cti,si is “good” (which
can be done without using skf). To argue semantic security, we proceed in three steps:

– Switch the commitment crs to an “equivocal mode” so that com = (comi)i∈[λ] can be
explained as a commitment to any string (with an appropriate choice of randomness).

– Show that (in equivocal mode) M = {cti,b} can be simulated (using ρ and {Ri,b}) without
knowing s.

– At this point, ct0 is guaranteed to hide m by invoking KDM-security of SKE.

To argue function-hiding, we show that the ciphertext ct can be decrypted in two equivalent
ways: (1) by using the “honest” decryption algorithm with the ABE secret key skf ; and (2)
using the PKE secret key associated with pk (and outputting a message only when f(x) = 1).
Semantic security of the scheme is guaranteed to hold in the presence of skf (the secret key
of the honest decryptor), but an adversary with oracle access to one of these two decryption
functions cannot distinguish them. Since the second procedure hides f(x′) for any attribute
x′ not queried by the adversary, function-hiding follows.

6In the actual decryption procedure, a more sophisticated mechanism is employed to identify s in order to handle
malformed ciphertexts.

9

Combined with the instantiations of KDM-secure SKE from various assumptions [BHHO08,
ACPS09, DG17, BLSV18, DGHM18] and the fact that single-key ABE follows from PKE [SS10,
GVW12], this approach gives a single-key function-hiding ABE scheme from any of the
CDH/LWE/LPN assumptions. For our LPN instantiation, we require noise rate 1/

√
n to

instantiate the public-key encryption scheme [Ale03]. We describe this construction and its
analysis in Section 5.

Obtaining malicious security. So far, we have shown how to construct DV-NIZKs from function-
hiding single-key ABE and provided several instantiations of the latter object from concrete
assumptions. However, the DV-NIZKs obtained in this fashion necessarily requires that the verifier’s
secret key be generated by a trusted party; indeed, if the verifier is malicious and allowed to set up
this DV-NIZK, it can simply sample an ABE key-pair (pp,msk) and remember the entire master
secret key. This clearly breaks zero-knowledge.

To construct a malicious DV-NIZK scheme, we intuitively have to replace the trusted setup of
an ABE scheme with a form of reusable non-interactive two-party computation that implements a
similar functionality. Specifically, we introduce a more general primitive called attribute-based secure
function evaluation (AB-SFE, see Definition 3.1). At a high-level, an AB-SFE scheme is a two-party
protocol between a sender and a receiver and parameterized by a public function F : X ×Y → {0, 1}.
The sender holds a public attribute x ∈ X and a secret message m while the receiver holds a secret
input y ∈ Y. At the end of the protocol, the receiver should learn m only if F (x, y) = 1 (otherwise,
the receiver should learn nothing). The protocol should be non-interactive in the following sense:
at the beginning of the protocol, the receiver publishes a public key pky based on its secret input
y; thereafter, the sender with its attribute-message pair (x,m) can send a single message to the
receiver that allows the receiver to learn m whenever F (x, y) = 1. The receiver’s initial message
pky should both hide y and be reusable for arbitrarily many protocol executions. We say AB-SFE
schemes satisfying this property are “key-hiding”. In addition, we are interested in security even
against malicious receivers that choose pky maliciously. We note that a single-key ABE scheme can
be used to construct a secure AB-SFE scheme satisfying a much weaker security notion where a
trusted party generates the receiver’s message pky.

Similarly to our use of ABE in the generic compiler above, an AB-SFE scheme can be used to
compile a Σ-protocol (or more generally, zero-knowledge PCPs) to obtain a reusable DV-NIZK;
moreover, this compiled DV-NIZK is secure even against malicious verifiers and is therefore an
MDV-NIZK. Specifically, in our construction, we replace the ABE scheme with an AB-SFE scheme
with respect to the function F where F ((x, b), k) = 1 if and only if PRF(k, x) = b. If we use a
maliciously-secure AB-SFE scheme, we only rely on a trusted setup to generate a uniformly random
common reference string. We then allow the verifier to (1) sample a PRF key k and (2) compute
the receiver message pkk for the AB-SFE protocol (with private input k) itself. Malicious security of
the AB-SFE protocol exactly allows us to prove malicious zero-knowledge of the compiled protocol.
As in the case of ABE, soundness of the compiled protocol relies on a form of AB-SFE security
where the receiver’s input y is hidden from the sender even given access to an appropriately-defined
decryption oracle.

We obtain AB-SFE schemes that can be plugged into our compiler in two steps:

• Constructing weak key-hiding AB-SFE. First, we combine a form of malicious-secure
2-message OT [PVW08, DGH+19] with garbled circuits to obtain an AB-SFE scheme that

10

satisfies weak key-hiding. Namely, the receiver’s input y is hidden to an adversary that does
not have access to the decryption oracle. We describe this construction in Section 5.2.

• Amplifying weak key-hiding to strong key-hiding. Then, we apply the [KW18b,
KMT19] transformation to the weak key-hiding AB-SFE scheme from above to obtain an
AB-SFE scheme that satisfies strong key-hiding where the receiver’s input y is hidden even
in the presence of the decryption oracle. This allows for new instantiations of MDV-NIZK
from any of the CDH/LWE/LPN assumptions (Theorem 1.2). Our LPN-based instantiation

requires noise rate n−(
1
2
+ε) for some ε > 0 in order to implement the [DGH+19] OT protocol.

We describe this construction in Section 5.3.

We provide a formal definition of AB-SFE in Section 3, and the full construction and analysis in
Section 5.

2 Preliminaries

We write λ to denote a security parameter. We say that a function f is negligible in λ, denoted
negl(λ), if f(λ) = o(1/λc) for all c ∈ N. We say an event happens with negligible probability
if the probability of the event happening is negligible, and that it happens with overwhelming
probability if its complement occurs with negligible probability. We say that an algorithm is efficient
if it runs in probabilistic polynomial-time (PPT) in the length of its inputs. We write poly(λ) to
denote a function bounded by a (fixed) polynomial in λ. We say that two families of distributions
D1 = {D1,λ}λ∈N and D2 = {D2,λ}λ∈N are computationally indistinguishable if no PPT adversary
can distinguish samples from D1 and D2 except with negligible probability, and we denote this by

writing D1
c
≈ D2. We write D1

s
≈ D2 to denote that D1 and D2 are statistically indistinguishable

(i.e., the statistical distance between D1 and D2 is bounded by a negligible function).
For an integer n ≥ 1, we write [n] to denote the set of integers {1, . . . , n}. For a finite set S, we

write x
r← S to denote that x is sampled uniformly at random from S. For a distribution D, we

write x← D to denote that x is sampled from D. For two finite sets X and Y , we write Funs[X ,Y]
to denote the set of functions from X to Y . We now review the main cryptographic building blocks
we use in this work.

Definition 2.1 (Pseudorandom Function [GGM84]). A pseudorandom function (PRF) with key-
space K, domain X , and range Y is an efficiently-computable function PRF : K × X → Y such that
for all PPT adversaries A,

Pr[k
r← K : APRF(k,·)(1λ) = 1]− Pr[f

r← Funs[X ,Y] : Af(·)(1λ) = 1] = negl(λ).

Definition 2.2 (Public-Key Encryption). A public-key encryption (PKE) scheme with message
space M is a tuple PKE = (PKE.KeyGen,PKE.Encrypt,PKE.Decrypt) with the following properties:

• PKE.KeyGen(1λ)→ (pk, sk): On input the security parameter λ, the key-generation algorithm
outputs a public key pk and a secret key sk.

• PKE.Encrypt(pk,m)→ ct: On input a public key pk and a message m ∈ M, the encryption
algorithm outputs a ciphertext ct.

11

• PKE.Decrypt(sk, ct) → m/⊥: On input a secret key st and a ciphertext ct, the decryption
algorithm either outputs a message m ∈M or a special symbol ⊥.

Moreover, PKE should satisfy the following properties:

• Correctness: PKE is perfectly correct if for all message m ∈M,

Pr[(pk, sk)← PKE.KeyGen(1λ) : PKE.Decrypt(sk,PKE.Encrypt(pk,m)) = m] = 1.

• Semantic security: For all PPT adversaries A,∣∣∣Pr[AO0(pk,·,·)(pk) = 1]− Pr[AO1(pk,·,·)(pk) = 1]
∣∣∣ = negl(λ),

where (pk, sk) ← PKE.KeyGen(1λ) and the encryption oracle Ob(pk,m0,m1) outputs the
ciphertext ctb ← PKE.Encrypt(pk,mb).

2.1 Designated-Verifier NIZKs

We now introduce the notion of a designated-verifier non-interactive zero-knowledge (DV-NIZK)
argument. We use a refined notion where there are separate setup and key-generation algorithms.
The setup algorithm outputs a common reference string (possibly a common random string) for the
scheme. The CRS can be reused by different verifiers, who would generate their own public and
private keys. In the traditional notion of designated-verifier NIZKs, the setup and key-generations
algorithms are combined, and the public key pk is simply included as part of the CRS.

Definition 2.3 (Designated-Verifier NIZK Argument). Let L be an NP language associated with
an NP relation R. A designated-verifier non-interactive zero-knowledge (DV-NIZK) argument
for L consists of a tuple of three efficient algorithms dvNIZK = (dvNIZK.Setup, dvNIZK.KeyGen,
dvNIZK.Prove, dvNIZK.Verify) with the following properties:

• dvNIZK.Setup(1λ)→ crs: On input the security parameter λ, the setup algorithm outputs a
common reference string crs. If dvNIZK.Setup outputs a uniformly random string, then we say
that the DV-NIZK scheme is in the common random string model.

• dvNIZK.KeyGen(crs)→ (pk, sk): On input a common reference string crs, the key-generation
algorithm outputs a public key pk and a secret verification key sk.

• dvNIZK.Prove(crs, pk, x, w)→ π: On input the common reference string crs, a public key pk,
a statement x, and a witness w, the prove algorithm outputs a proof π.

• dvNIZK.Verify(crs, sk, x, π)→ {0, 1}: On input the common reference string crs, a secret key
sk, a statement x, and a proof π, the verification algorithm outputs a bit b ∈ {0, 1}.

Moreover, dvNIZK should satisfy the following properties:

• Completeness: For all (x,w) ∈ R, and taking crs ← dvNIZK.Setup(1λ) and (pk, sk) ←
dvNIZK.KeyGen(crs), we have that

Pr
[
π ← dvNIZK.Prove(crs, pk, x, w) : dvNIZK.Verify(crs, sk, x, π) = 1

]
= 1.

12

• Soundness: We consider two variants of soundness:

– Non-adaptive soundness: For all x /∈ L, all PPT adversaries A,

Pr
[
π ← AdvNIZK.Verify(crs,sk,·,·)(1λ, crs, pk, x) : dvNIZK.Verify(crs, sk, x, π) = 1

]
= negl(λ),

where crs← dvNIZK.Setup(1λ) and (pk, sk)← dvNIZK.KeyGen(crs).

– Adaptive soundness: For all PPT adversaries A,

Pr
[
(x, π)← AdvNIZK.Verify(crs,sk,·,·)(1λ, crs) :

x /∈ L ∧ dvNIZK.Verify(crs, sk, x, π) = 1
]

= negl(λ),

where (crs, pk, sk)← dvNIZK.Setup(1λ) and (pk, sk)← dvNIZK.KeyGen(crs).

• Zero-knowledge: For all PPT adversaries A, there exists a PPT simulator S = (S1,S2) such
that ∣∣∣Pr[AO0(crs,pk,·,·)(crs, pk, sk) = 1]− Pr[AO1(stS ,·,·)(crs, pk, sk) = 1]

∣∣∣ = negl(λ),

where crs← dvNIZK.Setup(1λ), (pk, sk)← dvNIZK.KeyGen(crs), and (stS , crs, pk, sk)← S1(1λ),
the oracle O0(crs, pk, x, w) outputs dvNIZK.Prove(crs, pk, x, w) if R(x,w) = 1 and ⊥ otherwise,
and the oracle O1(stS , x, w) outputs S2(stS , x) if R(x,w) = 1 and ⊥ otherwise.

Definition 2.4 (Malicious Designated-Verifier NIZKs [QRW19]). Let dvNIZK be a DV-NIZK for a
language L (with associated NP relation R). For an adversary A, and a simulator S = (S1,S2), we
define two experiments ExptRealA(λ) and ExptSimA,S(λ) as follows:

• Setup: In ExptRealA(λ), the challenger samples crs← dvNIZK.Setup(1λ) and in ExptSimA,S(λ),

the challenger samples (stS , crs) ← S1(1λ). In ExptRealA(λ), the challenger gives crs to A,
while in ExptSimA,S(λ), the challenger gives crs to A. Then, A outputs a public key pk.

• Verification queries: Algorithm A is then given access to a verification oracle. In both ex-
periments, if R(x,w) 6= 1, then the challenger replies with ⊥. Otherwise, in ExptRealA(λ), the
challenger replies with π ← dvNIZK.Prove(crs, pk, x, w), and in ExptSimA,S(λ), the challenger
replies with π ← S2(stS , pk, x).

• Output: At the end of the experiment, the adversary outputs a bit b′ ∈ {0, 1}, which is the
output of the experiment.

We say that dvNIZK provides zero-knowledge against malicious verifiers if for all PPT adversaries

A, there exists an efficient simulator S such that ExptRealA(λ)
c
≈ ExptSimA,S(λ). If dvNIZK

satisfies this property (in addition to completeness and soundness), then we say that dvNIZK is a
malicious-designated-verifier NIZK (MDV-NIZK).

Remark 2.5 (Reusability of the CRS with Many Public Keys). The zero-knowledge property of
Definition 2.4 only provides (multi-theorem) zero-knowledge with respect to a single maliciously-
generated public key pk. Using the “OR trick” transformation from [FLS99], any MDV-NIZK can
be generically compiled into one where a single CRS can be reused with an arbitrary polynomial

13

number of (potentially maliciously-generated) public keys, while preserving zero-knowledge. Note
that the original transformation compiled any NIZK in the CRS model with single-theorem zero-
knowledge into a multi-theorem version; we note that it also directly applies to the (malicious)
designated-verifier setting (essentially because proofs can still be generated publicly). Additionally,
if the original MDV-NIZK is in the common random string model, then the resulting protocol is
also in the common random string model.

Remark 2.6 (Adaptive Soundness via Complexity Leveraging). Using the standard technique of
complexity leveraging [BB04], a DV-NIZK satisfying non-adaptive soundness also satisfies adaptive
soundness at the expense of a super-polynomial loss in the security reduction.

2.2 Zero-Knowledge PCPs

Definition 2.7 (Zero-Knowledge PCP [KPT97, IMS12]). LetR : {0, 1}n×{0, 1}h → {0, 1} be an NP
relation and L ⊆ {0, 1}n be the associated language. A non-adaptive, `-query zero-knowledge PCP
(with alphabet Σ) for L is a tuple of algorithms zkPCP = (zkPCP.Prove, zkPCP.Query, zkPCP.Verify)
with the following properties:

• zkPCP.Prove(x,w) → π: On input a statement x ∈ {0, 1}n and a witness w ∈ {0, 1}h, the
prove algorithm outputs a proof π ∈ Σm.

• zkPCP.Query(x)→ (stx, q1, . . . , q`): On input a statement x ∈ {0, 1}n, the query-generation
algorithm outputs a verification state stx and ` query indices q1, . . . , q` ∈ [m].

• zkPCP.Verify(stx, s1, . . . , s`)→ {0, 1}: On input the verification state st and a set of responses
s1, . . . , s` ∈ Σ, the verify algorithm outputs a bit b ∈ {0, 1}.

Moreover, zkPCP should satisfy the following properties:

• Efficiency: The running time of zkPCP.Prove, zkPCP.Query, and zkPCP.Verify should be
bounded by poly(n). In particular, this means that m = poly(n).

• Completeness: For all x ∈ {0, 1}n and w ∈ {0, 1}h where R(x,w) = 1,

Pr[zkPCP.Verify(stx, πq1 , . . . , πq`) = 1] = 1,

where π ← zkPCP.Prove(x,w) and (stx, q1, . . . , q`)← zkPCP.Query(x).

• Soundness: For all x /∈ L, all proof strings π ∈ Σm,

Pr[zkPCP.Verify(stx, πq1 , . . . , πq`) = 1] = negl(n),

where (stx, q1, . . . , q`)← zkPCP.Query(x).

• Zero-knowledge: For all PPT adversaries A = (A1,A2), there exists an efficient simulator
S such that ∣∣∣Pr[b = 1 | R(x,w) = 1]− Pr[b̃ = 1 | R(x,w) = 1]

∣∣∣ = negl(n),

where (stA, x, w, q1, . . . , q`)← A1(1n), π ← zkPCP.Prove(x,w), (π̃1, . . . , π̃`)← S(x, q1, . . . , q`),
b← A2(stA, πq1 , . . . , πq`), and b̃← A2(stA, π̃1, . . . , π̃`),

14

Semi-malicious zero-knowledge. The zero-knowledge requirement in Definition 2.7 requires
that there exists a PPT simulator for an adversary that reads any set of ` bits of the PCP, including
subsets that would never be output by zkPCP.Query. In our constructions, we can rely on the
relaxed notion of semi-malicious zero-knowledge which only requires simulation for subsets of bits
that are output by an invocation of zkPCP.Query (for some setting of the randomness). Specifically,
we define the following:

Definition 2.8 (Semi-Malicious Zero-Knowledge). A zero-knowledge PCP zkPCP for a language L
with associated NP relation R satisfies semi-malicious zero-knowledge if for all PPT adversaries
A = (A1,A2), there exists a PPT simulator S such that

|Pr[A2(stA, πq1 , . . . , πq`) = 1 | R(x,w) = 1]− Pr[A2(stA, π̃1, . . . , π̃`) = 1 | R(x,w) = 1]| = negl(n),

where (stA, x, w, r) ← A1(1
n), (q1, . . . , q`) ← zkPCP.Query(x; r), π ← zkPCP.Prove(x,w), and

(π̃1, . . . , π̃`)← S(x, q1, . . . , q`).

Instantiating zero-knowledge PCPs. As noted by Ishai et al. [IMS12], the original zero-
knowledge protocol by Goldreich et al. [GMW86] makes implicit use of an honest-verifier zero-
knowledge PCP for graph 3-coloring. To briefly recall, the prover takes a 3-coloring of the graph,
randomly permutes the colors, and writes down the colors for each vertex as the PCP. To check the
PCP, the (honest) verifier samples a random edge in the graph and reads the colors for the two
nodes associated with the edge. It is straightforward to see that if zkPCP.Query always outputs a
pair of nodes corresponding to some edge in the graph, then this PCP satisfies semi-malicious zero-
knowledge. To achieve negligible soundness, we rely on parallel amplification (e.g., by concatenating
many independent copies of the PCP) and note that semi-malicious zero-knowledge is indeed
preserved under parallel repetition. We state this instantiation below:

Theorem 2.9 (Semi-Malicious Zero-Knowledge PCP [GMW86]). Let L ⊆ {0, 1}n be an NP language.
Then, there exists an `-query zero-knowledge PCP for L with alphabet Σ = {0, 1, 2} and ` = poly(n).

We note that there are many other ways to instantiate the zero-knowledge PCP with the desired
properties. For instance, Blum’s protocol for graph Hamiltonicity [Blu86] also implicitly uses a (semi-
malicious) zero-knowledge PCP. We can also construct zero-knowledge PCPs (with fully malicious
zero knowledge) using multiparty computation (MPC) protocols by using the MPC-in-the-head
technique of Ishai et al. [IKOS07]. More broadly, Σ-protocols with a polynomial-size challenge space
can generally be viewed as implicitly implementing a (semi-malicious) zero-knowledge PCP.

2.3 Attribute-Based Encryption

Definition 2.10 (Attribute-Based Encryption). An attribute-based encryption (ABE) scheme
over a message space M, an attribute space X , and a function family F = {f : X → {0, 1}} is a
tuple of algorithms ABE = (ABE.Setup,ABE.KeyGen,ABE.Encrypt,ABE.Decrypt) with the following
properties:

• ABE.Setup(1λ)→ (pp,msk): On input the security parameter λ, the setup algorithm outputs
the public parameters pp and the master secret key msk.

• ABE.KeyGen(pp,msk, f) → skf : On input the public parameters pp, the master secret key
msk and a function f ∈ F , the key-generation algorithm outputs a decryption key skf .

15

• ABE.Encrypt(pp, x,m)→ ctx,m: On input the public parameters pp, an attribute x ∈ X , and
a message m ∈M, the encryption algorithm outputs a ciphertext ctx,m.

• ABE.Decrypt(pp, sk, ct)→ (x,m): On input the public parameters pp, a secret key sk (which
could be the master secret key), and a ciphertext ct, the decryption algorithm either outputs
an attribute-message pair (x,m) ∈ X ×M or a special symbol ⊥.

Definition 2.11 (Correctness). An ABE scheme ABE is (perfectly) correct if for all messages
m ∈M, all attributes x ∈ X , and all predicates f ∈ F , and setting (pp,msk)← ABE.Setup(1λ),

• Pr
[
ABE.Decrypt

(
pp,msk,ABE.Encrypt(pp, x,m)

)
= (x,m)

]
= 1.

• If f(x) = 1, then

Pr
[
ABE.Decrypt

(
pp,ABE.KeyGen(pp,msk, f),ABE.Encrypt(pp, x,m)

)
= (x,m)

]
= 1.

Definition 2.12 (Security). Let ABE be an ABE scheme over an attribute space X , message
space M, and function family F . For a security parameter λ and an adversary A, we define the
ABE security experiment ExptABEA (λ, b) as follows. The challenger begins by sampling (pp,msk)←
ABE.Setup(1λ) and gives pp to the adversary A. Then A is given access to the following oracles:

• Key-generation oracle: On input a function f ∈ F , the challenger responds with a key
skf ← ABE.KeyGen(pp,msk, f).

• Challenge oracle: On input an attribute x ∈ X and a pair of messages m0,m1 ∈ M, the
challenger responds with a ciphertext ct← ABE.Encrypt(pp, x,mb).

At the end of the game, the adversary outputs a bit b′ ∈ {0, 1}, which is also the output of the
experiment. An adversary A is admissible for the attribute-based encryption security game if it
makes one challenge query (x,m0,m1), and for all key-generation queries f the adversary makes,
f(x) = 0. We say that ABE is secure if for all efficient and admissible adversaries A,∣∣∣Pr[ExptABEA (λ, 0) = 1]− Pr[ExptABEA (λ, 1) = 1]

∣∣∣ = negl(λ).

Moreover, we say that ABE is single-key secure if the above property holds for all efficient and
admissible adversaries A that make at most one key-generation query.

Function hiding. Our generic constructions of designated-verifier NIZKs from ABE (and gener-
alizations thereof) relies on an additional (weak) notion of function hiding. While the traditional
notion of function hiding asks that the secret decryption key hides the function, our construction
relies on a weaker notion where we require that oracle access to the decryption function does not
reveal information about the underlying function (other than what can be directly inferred by the
input-output behavior of the function). We give the formal definition below:

Definition 2.13 (Weak Function Hiding). Let ABE be an ABE scheme, and let t = t(λ) be a
bound on the length of ciphertext in ABE. We say that ABE satisfies weak function hiding if there
exists an efficient simulator S such that for all functions f ∈ F , (pp,msk)← ABE.Setup(1λ), and
skf ← ABE.KeyGen(pp,msk, f)∣∣∣Pr[AO1(pp,skf ,·)(1λ, pp) = 1]− Pr[AO2(pp,msk,·)(1λ, pp) = 1]

∣∣∣ = negl(λ),

where the oracles O1,O2 are defined as follows:

16

• Real decryption oracle: On input pp, skf , ct ∈ {0, 1}t, the real decryption oracle
O1(pp, skf , ct) outputs ABE.Decrypt(pp, skf , ct).

• Ideal decryption oracle: On input pp, msk, and a string ct ∈ {0, 1}t, the ideal decryption
oracle O2(pp,msk, ct) outputs Sf(·)(pp,msk, ct). Moreover, we restrict the simulator S to make
at most one oracle query to f per invocation.

2.4 Receiver-Extractable 2-Message OT

Definition 2.14 (Receiver-Extractable 2-Message OT). A receiver-extractable 2-message 1-out-of-2
OT scheme on k-bit messages is a tuple of PPT algorithms OT = (OT.Setup,OT1,OT2,OT.Receive)
satisfying the following properties:

• OT.Setup(1λ) → crs: On input the security parameter λ, the setup algorithm outputs a
common reference string crs. If OT.Setup outputs a uniformly random string, we say that the
OT scheme is in the common random string model.

• OT1(crs, b; r)→M (1) : On input the common reference string crs and a choice bit b ∈ {0, 1},
OT1 outputs the first message of the OT (from receiver to sender). Here, r ∈ {0, 1}τ denotes
the random coins used in the process.

• OT2(crs,M
(1),m0,m1) → M (2): On input the common reference string crs, the OT first

message M (1) and the sender’s messages m0,m1 ∈ {0, 1}k, OT2 outputs the the second OT
message (from sender to receiver).

• OT.Receive(crs,M (2), b, r) → m: On input the common reference string crs, the OT second
message M (2), the receiver’s choice bit b ∈ {0, 1} and random coins r ∈ {0, 1}τ , the receiver
algorithm outputs a message m ∈ {0, 1}k.

Definition 2.15 (Correctness). An OT scheme OT is (perfectly) correct if for all security parameters
λ ∈ N, choice bits b ∈ {0, 1} and messages m0,m1 ∈ {0, 1}k, we have:

Pr
[
OT.Receive(crs,M (2), b, r) = mb

]
= 1,

where crs← OT.Setup, r
r← {0, 1}τ , M (1) = OT1(crs, b; r), and M (2) ← OT2(crs,M

(1),m0,m1).

Definition 2.16 (Computational Receiver Security). An OT scheme OT satisfies (computational)
receiver privacy if

{r r← {0, 1}τ : (crs,OT1(crs, 0; r))}
c
≈ {r r← {0, 1}τ : (crs,OT1(crs, 1; r))},

where crs← OT.Setup(1λ).

Definition 2.17 (Extractability against Malicious Receivers). An OT scheme OT is extractable
against malicious receivers if there exist PPT algorithms (crs, td) ← OT.SetupExt(1λ) and y ←
OT.Ext(td,M (1)) such that the following two properties hold:

• CRS indistinguishability: The common reference strings generated by OT.Setup and
OT.SetupExt are computationally indistinguishable. Namely, we require

{crs← OT.Setup(1λ) : crs}
c
≈ {(crs, td)← OT.SetupExt(1λ) : crs}.

17

• Sender privacy in extraction mode: For a security parameter λ and an adversary A, let
ExptOT-Ext

OT,A (λ, b) be the following experiment:

– Setup: The challenger samples (crs, td)← OT.SetupExt(1λ) and gives crs to the adver-
sary.

– Initial message: The adversary picks M (1) and sends it to the challenger. The challenger
computes β ← OT.Ext(td,M (1)) and sends it to the adversary.

– Challenge query: The adversary picks two messages m0,m1 ∈ {0, 1}k and sends them
to the challenger. The challenger sets m̃β = mβ and m̃1−β = m1−β if b = 0 and
m̃1−β = 0k if b = 1, and sends M (2) ← OT2(crs,M

(1), m̃0, m̃1) to the adversary.

– Output: The adversary outputs a bit b′ ∈ {0, 1}, which is the output of the experiment.

We say that OT satisfies sender privacy in extraction mode if for all PPT adversaries A:∣∣∣Pr[ExptOT-Ext
OT,A (λ, 0) = 1]− Pr[ExptOT-Ext

OT,A (λ, 1) = 1]
∣∣∣ = negl(λ).

Remark 2.18 (Batch OT). In the following we will assume that OT1 takes as input an `-bit choice
string y ∈ {0, 1}` for some ` = poly(λ) (rather than just a single choice bit b ∈ {0, 1}), and that the

OT2 algorithm takes as input 2` messages {(m(i)
0 ,m

(i)
1)}i∈[`]. Correctness now says that the receiver

receives messages m
(i)
yi for i ∈ [`]. Receiver security says that OT1(crs, y) computationally hides y.

Extractability against malicious receivers still requires that the extraction CRS is computationally
indistinguishable from the real CRS, and moreover, that the extraction algorithm OT.Ext now
extracts y ∈ {0, 1}` from M (1), and that the OT second message M (2) hides all of the messages

m
(i)
(1−yi) for i ∈ [`]. This is without loss of generality, since we can simply run ` independent

instances of the basic 1-out-of-2 OT scheme in parallel (where the new CRS is the concatenation of
` independent common reference strings for the base OT). Those properties then follow directly via
a standard hybrid argument.

Constructing receiver-extractable OT. Finally, we note that the OT constructions of [PVW08,
DGH+19] imply receiver-extractable 2-message (batch) OTs from the CDH/LWE/LPN assumptions.
We state this in the following theorem:

Theorem 2.19 (Receiver-Extractable 2-Message OT from CDH/LWE/LPN [PVW08, DGH+19]).
Assuming either CDH, LWE with a polynomial modulus-to-noise ratio (and polynomial modulus), or

LPN (with noise rate n−(
1
2
+ε) for any ε > 0), there exists a receiver-extractable 2-message 1-out-of-2

OT for k-bit messages (for any fixed k = poly(λ)) in the common random string model.

We show in Appendix B that the [PVW08] OT scheme satisfies our notion of receiver extractabil-
ity. As for [DGH+19], we use their intermediate “half-UC OT scheme;” it follows directly from their
proof of security that our notion of sender privacy holds (in fact, this is true even if we give the
extraction trapdoor itself to the adversary) holds. Moreover, the CRS of this intermediate scheme
consists of a uniformly random string along with the public key of a public-key encryption scheme;
since CDH and LPN both imply public-key encryption schemes with pseudorandom public keys,
this allows the overall OT protocol to be instantiated with a uniformly random CRS.

18

2.5 Garbling Scheme

Definition 2.20 (Garbling Scheme [Yao86, LP09, BHR12]). A garbling scheme for Boolean circuits
consists of two algorithms Yao = (Yao.Garble,Yao.Eval) with the following properties:

• Yao.Garble(1λ, C) → (C̃, lab): On input a security parameter λ, a Boolean circuit C on
n-bit inputs, the garbling algorithm outputs a garbled circuit C̃ and a collection of labels
lab = {labi,b}i∈[n],b∈{0,1} where labi,b ∈ {0, 1}λ for all i ∈ [n] and b ∈ {0, 1}.

• Yao.Eval(C̃,
−→
lab)→ y: On input a garbled circuit C̃ and a collection of labels

−→
lab = {labi,xi}i∈[n],

the evaluation algorithm outputs a string y.

A garbling scheme should satisfy the following two properties:

• Correctness: For all circuits C : {0, 1}n → {0, 1}m and inputs x ∈ {0, 1}n we have that

Pr
[
C(x) = Yao.Eval(C̃, {labi,xi}i∈[n])

]
= 1,

where (C̃, {labi,b}i∈[n],b∈{0,1})← Yao.Garble(1λ, C).

• Security: There exists a PPT simulator S such that for all circuits C : {0, 1}n → {0, 1}m and
inputs x ∈ {0, 1}n, we have that(

C̃, {labi,xi}i∈[n]
)

c
≈ S

(
1|C|, 1n, C(x)

)
,

where (C̃, {labi,b}i∈[n],b∈{0,1})← Yao.Garble(1λ, C).

Theorem 2.21 (Yao’s Garbling Scheme [Yao86, LP09, BHR12]). Assuming one-way functions
exist, there exists a secure garbling scheme for Boolean circuits.

2.6 Non-Interactive Equivocable Commitments

Definition 2.22 (Non-Interactive Equivocable Commitment [CIO98]). A non-interactive equivo-
cable commitment scheme Com = (Com.Setup,Com.Commit) with message space M is defined as
follows:

• Com.Setup(1λ) → crs: On input the security parameter λ, the setup algorithm outputs a
common reference string crs. If Com.Setup outputs a uniformly random string, we say that
the commitment scheme is in the common random string model.

• Com.Commit(crs,m; r)→ c: On input a reference string crs, a message m ∈M, and random-
ness r ∈ {0, 1}λ, the commit algorithm outputs a commitment c.

Moreover, Com should satisfy the following properties:

• Statistical binding: For all values c and distinct messages m0,m1 ∈M

Pr[∃r0, r1 ∈ {0, 1}λ : Com.Commit(crs,m0; r0) = c = Com.Commit(crs,m1; r1)] = negl(λ),

where crs← Com.Setup(1λ).

19

• Equivocation: There exists PPT algorithms (Com.SetupEquiv,Com.Equivocate) with the
following properties:

– Com.SetupEquiv(1λ)→ (crs, c̄, td): On input the security parameter λ, the setup algorithm
outputs a common reference string crs, a commitment c̄, and a trapdoor td.

– Com.Equivocate(td,m, c) → r: On input a trapdoor td, a message m ∈ M, and a
commitment c, the equivocate algorithm outputs r ∈ {0, 1}λ.

Moreover, for all messages m ∈M, we require that

(crs, c, r)
c
≈ (crs, c̄, r̄),

where crs← Com.Setup(1λ), r
r← {0, 1}λ, and c← Com.Commit(crs,m; r) are sampled honestly,

while (crs, c̄, td) ← Com.SetupEquiv(1λ) and r̄ ← Com.Equivocate(td,m, c̄) are sampled in
equivocation mode. In particular, this implies that for all messages m ∈M,

Pr[r ← Com.Equivocate(td,m, c̄) : c̄ 6= Commit(crs,m; r)] = negl(λ),

where (crs, c̄, td)← Com.SetupEquiv(1λ).

Theorem 2.23 (Equivocable Bit-Commitments from One-Way Functions [Nao91, CIO98]). As-
suming one-way functions exist, there exists a non-interactive equivocable commitment scheme with
message space {0, 1} in the common random string model.

2.7 KDM-Secure Secret-Key Encyryption

Definition 2.24 (One-Time KDM-Secure SKE). A secret-key encryption (SKE) scheme SKE =
(SKE.Encrypt, SKE.Decrypt) is said to be one-time KDM secure for a function class F (with many-
bit outputs) if for every function f ∈ F , the following two distributions are computationally
indistinguishable:

{s r← {0, 1}λ : SKE.Encrypt(s, f(s))}
c
≈ {s r← {0, 1}λ : SKE.Encrypt(s, 0|f(s)|)}

Remark 2.25 (KDM-Secure SKE Constructions for Projection Functions). We say a function
f : {0, 1}λ → {0, 1}m is a projection function if each bit of f(s) depends on at most one bit of s.
As in [KMT19], we consider the class F = Fproj of projection functions. Secret-key encryption
schemes that are KDM-secure for the class of projection functions can be constructed from the CDH
[BHHO08, BLSV18], LWE (with polynomial modulus) [ACPS09, BLSV18], and constant-noise LPN
[ACPS09] assumptions.

3 Attribute-Based Secure Function Evaluation

In this section, we formally introduce our notion of an attribute-based secure function evaluation
scheme (AB-SFE), which can be viewed as a generalization of a single-key ABE scheme. We then
define two main security requirements on AB-SFE schemes: message-hiding and key-hiding. For
each notion, we introduce a “weak” variant and a “strong” variant of the notion.

20

Definition 3.1 (Attribute-Based Secure Function Evaluation). An attribute-based secure function
evaluation (AB-SFE) scheme for a function F : X ×Y → {0, 1} with message space M consists of a
tuple ABSFE = (ABSFE.Setup,ABSFE.KeyGen,ABSFE.Encrypt,ABSFE.Decrypt) of PPT algorithms
with the following properties:

• ABSFE.Setup(1λ)→ crs: On input the security parameter λ, the setup algorithm outputs a
common reference string crs. We say that the AB-SFE scheme is in the common random
string model if Setup simply outputs a uniformly random string.

• ABSFE.KeyGen(crs, y)→ (pk, sk): On input the common reference string crs and a value y ∈ Y ,
the key-generation algorithm outputs a public key pk and a secret key sk.

• ABSFE.Encrypt(crs, pk, x,m)→ ct: On input the common reference string crs, a public key pk,
a value x ∈ X , and a message m ∈M, the encryption algorithm outputs a ciphertext ct.

• ABSFE.Decrypt(crs, sk, x, ct) → m: On input the common reference string crs, a secret key
sk, an attribute x ∈ X , and a ciphertext ct, the decryption algorithm outputs a message
m ∈M∪ {⊥}.

Definition 3.2 (Correctness). An AB-SFE scheme ABSFE is (perfectly) correct if for all messages
m ∈M, all x ∈ X , y ∈ Y where F (x, y) = 1,

Pr
[
ABSFE.Decrypt

(
crs, sk, x,ABSFE.Encrypt(crs, pk, x,m)

)
= m

]
= 1,

where crs← ABSFE.Setup(1λ) and (pk, sk)← ABSFE.KeyGen(crs, y).

Message-hiding. The first security requirement on an AB-SFE scheme is message-hiding. The
basic notion (or “weak” notion) is essentially semantic security: namely, a ciphertext with attribute
x ∈ X encrypted under a public key for y ∈ Y where F (x, y) = 0 should hide the underlying message.
Next, we define a “strong” notion of message-hiding, which says semantic security holds even in
the setting where the public-key is maliciously chosen. In this case, we require that there exists an
efficient algorithm that can extract an attribute y from any (possibly malformed) public key pk,
and ciphertexts encrypted to any attribute x where F (x, y) = 0 still hide the underlying message.

Definition 3.3 (Weak Message-Hiding). Let ABSFE be an AB-SFE scheme. For a bit b ∈ {0, 1},
we define the following game between an adversary A and a challenger:

• Setup: The adversary A begins by sending an input y ∈ Y to the challenger. The challenger
samples crs← ABSFE.Setup(1λ), (pk, sk)← ABSFE.KeyGen(crs, y) and gives crs, pk, sk to A.

• Challenge query: The adversary A then makes a challenge query (x,m0,m1) to the
challenger where x ∈ X , m0,m1 ∈ M, and F (x, y) = 0. The challenger replies with
ct← ABSFE.Encrypt(crs, pk, x,mb) and gives ct to A.

• Output: The adversary A outputs a bit b′ ∈ {0, 1}.

We say that ABSFE provides weak message-hiding if for all PPT adversaries A,∣∣Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]
∣∣ = negl(λ).

21

Definition 3.4 (Strong Message-Hiding). An AB-SFE scheme ABSFE provides strong message-
hiding if there exists a PPT “extractable-setup” algorithm (crs, td)← ABSFE.SetupExt(1λ) and a
PPT extractor y ← ABSFE.Ext(td, pk) with the following properties:

• CRS indistinguishability: The common reference strings output by ABSFE.Setup and
ABSFE.SetupExt are computationally indistinguishable:

{crs← ABSFE.Setup(1λ) : crs}
c
≈ {(crs, td)← ABSFE.SetupExt(1λ) : crs}.

• Ciphertext indistinguishability in extraction mode: For a bit b ∈ {0, 1}, we define the
following game between an adversary A and a challenger:

– Setup: The challenger samples (crs, td)← ABSFE.SetupExt(1λ) and gives crs to A.

– Public key selection: The adversary chooses a public key pk. The challenger computes
y ← ABSFE.Ext(td, pk) and gives y ∈ Y to A.

– Challenge query: The adversary A makes a challenge query (x,m0,m1) where x ∈ X ,
m0,m1 ∈M, and F (x, y) = 0. The challenger computes ct← ABSFE.Encrypt(crs, pk, x,mb)
and gives ct to A.

– Output: The adversary A outputs a bit b′ ∈ {0, 1}.

We require that for all PPT adversaries A, |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]| = negl(λ).

Remark 3.5 (Multiple Challenge Queries). By a standard hybrid argument, any AB-SFE scheme
that satisfies weak message-hiding (resp., strong message-hiding) against an adversary that makes a
single challenge query (x,m0,m1) is also secure against an adversary that makes polynomially-many
challenge queries. Note that in the strong message-hiding setting, the challenger encrypts each
challenge message with respect to the same public key chosen by the adversary (and correspondingly,
the same value of y is used to check admissibility of each of the adversary’s challenge queries). It
is essential for the hybrid argument to use the same public key together with the same extracted
attribute y, which is known to the adversary (otherwise, the reduction algorithm is unable to
simulate the other ciphertexts in the hybrid argument, and correspondingly, single-challenge security
does not necessarily imply multiple-challenge security).

Key-hiding. The second security requirement on an AB-SFE scheme is key-hiding. Similar to
the case of message-hiding security, we consider a “weak” notion and a “strong” notion. The weak
notion requires that a public key pk associated with an attribute y hides y, while the strong notion
requires that y remains hidden even if the adversary has access to a decryption oracle (with the
associated secret key sk). Strong key-hiding is reminiscent of the weak function-hiding property we
defined for ABE (Definition 2.13), and indeed, we show in Section 5.1 that ABE schemes satisfying
weak function-hiding imply AB-SFE schemes that satisfy strong key-hiding.

Definition 3.6 (Weak Key-Hiding). An AB-SFE scheme ABSFE satisfies weak key-hiding if there
exists a PPT simulator S such that for all y ∈ Y and all PPT adversaries A,∣∣∣Pr[A(1λ, crs, pk) = 1]− Pr[A(1λ, crs, pk) = 1]

∣∣∣ = negl(λ),

where crs← ABSFE.Setup(1λ), (pk, sk)← ABSFE.KeyGen(crs, y), and (crs, pk)← S(1λ).

22

Definition 3.7 (Strong Key-Hiding). An AB-SFE scheme ABSFE satisfies strong key-hiding if there
exists a PPT simulator S = (S1,S2) such that for all y ∈ Y and all PPT adversaries A we have:∣∣∣Pr[AO1(crs,sk,·,·)(1λ, crs, pk) = 1]− Pr[AO2(st,·,·)(1λ, crs, pk) = 1]

∣∣∣ = negl(λ),

where crs ← ABSFE.Setup(1λ), (pk, sk) ← ABSFE.KeyGen(crs, y), (stS , crs, pk) ← S1(1λ) and the
oracles O1,O2 are defined as follows:

• Real decryption oracle O1: On input a string crs, a secret key sk, a value x ∈ X , and a
ciphertext ct, output ABSFE.Decrypt(crs, sk, x, ct).

• Ideal decryption oracle O2: On input a state stS , x ∈ X and a ciphertext ct, output
S2(stS , x, ct, F (x, y)).

4 Designated-Verifier NIZKs from AB-SFE

In this section, we show how to construct a DV-NIZK from any AB-SFE scheme that provides weak
message-hiding and strong key-hiding. In Appendix D, we show that a converse of this statement
also holds: given any public-key encryption scheme and a DV-NIZK, we can obtain an AB-SFE
scheme that provides weak message-hiding and strong key-hiding. This means that assuming
public-key encryption exists, our notion of AB-SFE is equivalent to DV-NIZK. Next, we strengthen
our construction and show that if the underlying AB-SFE scheme satisfies strong message-hiding
(and strong key-hiding), then we obtain a DV-NIZK with security against malicious verifiers. We
give our main construction below:

Construction 4.1 (Designated-Verifier NIZKs from AB-SFE). Let λ be a security parameter.
Let L ⊆ {0, 1}n be an NP language associated with an NP relation R ⊆ {0, 1}n × {0, 1}h, where
n = n(λ), h = h(λ). Our construction relies on the following building blocks:

• Let zkPCP = (zkPCP.Prove, zkPCP.Query, zkPCP.Verify) be an efficient `-query, non-adaptive,
zero-knowledge PCP (with alphabet Σ) for L (Definition 2.7). Let m = m(λ) be the length of
the PCP and ρ = ρ(λ) be a bound on the number of random bits needed for for zkPCP.Query.

• Let PRF : K × {0, 1}n → {0, 1}ρ be a pseudorandom function (Definition 2.1).

• Let F : ({0, 1}n × [m])×K → {0, 1} be the function

F ((x, i), k) :=

{
1 ∃j ∈ [`] where i = qj

0 otherwise,
(4.1)

where (stx, q1, . . . , q`)← zkPCP.Query(x;PRF(k, x)).

• Let ABSFE = (ABSFE.Setup,ABSFE.KeyGen,ABSFE.Encrypt,ABSFE.Decrypt) be an AB-SFE
scheme (Definition 3.1) for F with message spaceM = Σ and attribute spaces X = {0, 1}n×[m]
and Y = K.

We construct a designated-verifier NIZK dvNIZK = (dvNIZK.Setup, dvNIZK.KeyGen, dvNIZK.Prove,
dvNIZK.Verify) for L as follows:

23

• dvNIZK.Setup(1λ): Output crs← ABSFE.Setup(1λ).

• dvNIZK.KeyGen(crs): Sample k
r← K, and (pk′, sk′) ← ABSFE.KeyGen(crs, k). Output the

public key pk = pk′, and the secret verification key sk = (k, sk′).

• dvNIZK.Prove(crs, pk, x, w): Construct a PCP π(PCP) ← zkPCP.Prove(x,w). Then, for each

i ∈ [m], compute ciphertexts cti ← ABSFE.Encrypt(crs, pk, (x, i), π
(PCP)
i), and finally, output

the proof π = (ct1, . . . , ctm).

• dvNIZK.Verify(crs, sk, x, π): On input the verification key sk = (k, sk′), a statement x ∈
{0, 1}n and a proof π = (ct1, . . . , ctm), compute (stx, q1, . . . , q`)← zkPCP.Query(x;PRF(k, x)).
For each j ∈ [`], compute sj ← ABSFE.Decrypt(crs, sk, (x, qj), ctqj), and finally, output
zkPCP.Verify(stx, s1, . . . , s`).

Security analysis. We now state and prove the completeness, soundness, and zero-knowledge
theorems for Construction 4.1.

Theorem 4.2 (Completeness). If zkPCP is complete and ABSFE is correct, then dvNIZK from
Construction 4.1 is complete.

Proof. Follows immediately by completeness of zkPCP and correctness of ABSFE.

Theorem 4.3 (Soundness). If PRF is a secure PRF, ABSFE satisfies strong key-hiding, and zkPCP
is sound, then dvNIZK from Construction 4.1 satisfies non-adaptive computational soundness.

Proof. Take any statement x∗ /∈ L. We proceed with a hybrid argument:

• Hyb0: This is the real soundness experiment. At the beginning of the game, the challenger

samples k
r← K, crs ← ABSFE.Setup(1λ), and (pk′, sk′) ← ABSFE.KeyGen(crs, k). It gives

crs and pk = pk′ to the adversary and sets sk = (k, sk′). When the adversary makes a
verification query (x, π), the challenger replies with dvNIZK.Verify(crs, sk, x, π). At the end
of the experiment, the adversary outputs a proof π∗. The output of the experiment is 1 if
dvNIZK.Verify(crs, sk, x∗, π∗) = 1 and 0 otherwise.

• Hyb1: Same as Hyb0, except the challenger uses the simulator S = (S1,S2) for the strong key-
hiding game for ABSFE to construct the CRS, the public key, and to implement the decryption
algorithm when responding to the verification queries. Namely, the challenger begins by
computing (stS , crs, pk) ← S1(1λ), and gives crs, pk to the adversary. When simulating
verification queries dvNIZK.Verify(crs, sk, x, π), the challenger proceeds as follows:

– Compute (stx, q1, . . . , q`)← zkPCP.Query(x;PRF(k, x)).

– Write π = (ct1, . . . , ctm). For each j ∈ [`], it computes sj ← S2(stS , (x, qj), ctqj , 1).

– The challenge replies with zkPCP.Verify(stx, s1, . . . , s`).

Notably, everything in this experiment can be simulated just given oracle access to PRF(k, ·).

This is computationally indistinguishable from Hyb0 by strong key-hiding security of ABSFE.
In particular, we use the fact that by construction, F ((x, qj), k) = 1 for each verification query.

24

• Hyb2: Same as Hyb1, except the challenger samples a random function f
r← Funs[{0, 1}n, {0, 1}ρ]

at the beginning of the experiment. Then, whenever it needs to compute PRF(k, x), it instead
computes f(x).

This is computationally indistinguishable from Hyb1 by security of PRF.

• Hyb3: Same as Hyb2, except whenever the challenger needs to compute dvNIZK.Verify(crs, sk, x∗, π)
for any proof string π, it instead sets the output to 0.

This is statistically indistinguishable from Hyb2 by soundness of zkPCP. To see this, let
Q = poly(λ) be the number of verification queries the adversary makes. By construction, the
challenger in Hyb2 and Hyb3 will compute dvNIZK.Verify(crs, sk, ·, ·) at most Q+1 times (when
responding to the Q verification queries and for computing the output of the experiment). For
t ∈ {0, . . . , Q+1}, let Hyb2,t be the experiment where the first t calls to dvNIZK.Verify(crs, sk, ·, ·)
are answered according to the specification in Hyb3 while the remaining queries are answered
according to the specification in Hyb2. By construction, Hyb2,0 ≡ Hyb2 and Hyb2,Q+1 ≡ Hyb3.
We now show that for t ∈ [Q + 1], the outputs of Hyb2,t−1 and Hyb2,t are statistically
indistinguishable. By construction, the challenger’s behavior in Hyb2,t−1 and Hyb2,t is identical

except in how it implements the tth call to dvNIZK.Verify(crs, sk, ·, ·).

Let (xt, πt) be the inputs to the tth invocation of dvNIZK.Verify(crs, sk, ·, ·). If xt 6= x∗, then the
verifier’s response is identically distributed in the two experiments. If xt = x∗, then in Hyb2,t−1,
the challenger replies with dvNIZK.Verify(crs, sk, x∗, π) while in Hyb2,t, the challenger replies
with 0. We argue that dvNIZK.Verify(crs, sk, x, π) outputs 0 in Hyb2,t−1 with overwhelming
probability. Suppose otherwise. Then, the challenger in Hyb2,t−1 must have first invoked

(stx∗ , q1, . . . , q`)
r← zkPCP.Query(x∗; r) where r = f(x∗) is uniformly random and independent

of all previous queries (since the challenger’s response in all of the previous verification queries
do not depend on f(x∗)7). Moreover, the challenger must have computed s1, . . . , s` ∈ {0, 1}
such that zkPCP.Verify(stx∗ , s1, . . . , s`) = 1. But since x∗ /∈ L, by soundness of zkPCP,
Pr[zkPCP.Verify(stx∗ , s1, . . . , s`) = 1] = negl(λ), where the probability is taken over the
randomness in zkPCP.Query. Thus, with overwhelming probability, dvNIZK.Verify(sk, x∗, π) =
0 in Hyb2,t−1.

By construction, for any proof π for challenge statement x∗, the challenger in Hyb3 rejects with
probability 1, and soundness follows.

Remark 4.4 (Adaptive Soundness without Complexity Leveraging). Theorem 4.3 shows that
Construction 4.1 gives a non-adaptively sound DV-NIZK. As noted in Remark 2.6, we can always
use complexity leveraging to obtain adaptive soundness. Here, we note that we can avoid complexity
leveraging and sub-exponential hardness assumptions if we instead apply our general compiler to
zero-knowledge PCPs based on “trapdoor Σ-protocols” [CLW18]. Informally, these are 3-message
proof systems satisfying two properties.

• Special soundness: For every false statement, and every first message a in the Σ-protocol,
there is exactly a single challenge that would cause the verifier to accept.

7By the specification of Hyb2,t−1, if the adversary made a verification query on (x∗, π) for any π as one of its first
t− 1 queries, the challenger simply replies with 0 (without computing f(x∗)).

25

• Trapdoor computation of bad challenges: For every false statement x and first message a,
the single “bad challenge” above can be efficiently computed given special trapdoor information.

For any Σ-protocol with special soundness, adaptive soundness of the AB-SFE-compiled protocol
is broken only if the verifier’s randomness (derived from the PRF) happens to coincide with the
“bad” challenge associated with the prover’s statement. For trapdoor Σ-protocols, this condition is
efficiently checkable (given the trapdoor), so the security of the PRF then says that this happens with
negligible probability, and adaptive soundness follows (via a similar sequence of hybrid arguments
as in the proof of Theorem 4.3). As shown in [CLW18], we can construct a trapdoor Σ-protocol
from Blum’s protocol for graph Hamiltonicity [Blu86]. We describe and analyze this formally in
Appendix A.

Theorem 4.5 (Zero-Knowledge). If ABSFE satisfies weak message-hiding (resp., strong message-
hiding) and zkPCP satisfies semi-malicious zero-knowledge, then the designated-verifier NIZK dvNIZK
from Construction 4.1 satisfies computational zero-knowledge (resp., computational zero-knowledge
against malicious verifiers).

Proof. We show that if ABSFE satisfies strong message-hiding and zkPCP satisfies semi-malicious
zero-knowledge, then dvNIZK satisfies zero-knowledge against malicious verifiers. The simpler case
of weak message-hiding implying vanilla zero-knowledge follows by an analogous hybrid argument
(in this case, the simulator can just sample the verifier’s public and secret keys as in the real scheme
instead of extracting it from the adversary’s public key). Thus, consider the case where ABSFE is
strong message-hiding. Then, there exists additional algorithms ABSFE.SetupExt and ABSFE.Ext
with the properties defined in Definition 3.4. We construct the zero-knowledge simulator S = (S1,S2)
below:

• S1(1λ): On input the security parameter λ, the simulator runs (crs, td)← ABSFE.SetupExt(1λ).

It also samples randomness r
r← {0, 1}τ that it will use for the ABSFE.Ext algorithm (where τ

is a bound on the number of bits of randomness ABSFE.Ext takes). Finally, it outputs crs and
a state stS = (td, r). Note that the randomness r is used to ensure that the simulator extracts
the same key k from the adversary’s public key when simulating the proofs.

• S2(stS , pk, x): On input the simulation state stS = (td, r), a public key pk, and a statement
x, the simulator begins by extracting a key k ← ABSFE.Ext(td, pk; r). Then, it computes

(stx, q1, . . . , q`)← zkPCP.Prove(x;PRF(k, x)) and (π̃
(PCP)
1 , . . . , π̃

(PCP)
`)← S(PCP)(x, q1, . . . , q`).

For i ∈ [m], the simulator takes zi ← π̃
(PCP)
j if i = qj for some j ∈ [`], and otherwise, it

sets zi ← 0. Finally, for each i ∈ [m], it computes cti ← ABSFE.Encrypt(crs, pk, (x, i), zi) and
outputs the simulated proof π = (ct1, . . . , ctm).

To complete the proof, we define a sequence of hybrid experiments:

• Hyb0: This is ExptRealA(λ). Namely, at the beginning of the game, the challenger samples
crs← ABSFE.Setup(1λ) and gives crs to the adversary. The adversary A then outputs a public
key pk. When A makes a verification query on (x,w) where R(x,w) = 1, the challenger replies
with dvNIZK.Prove(crs, pk, x, w). At the end of the experiment, algorithm A outputs a bit
b ∈ {0, 1}, which is also the output of the experiment.

• Hyb1: Same as Hyb0, except we replace the real common reference string crs← ABSFE.Setup(1λ)
with a simulated one crs where (crs, td)← ABSFE.SetupExt(1λ).

26

This is computationally indistinguishable from Hyb0 by the CRS indistinguishability of ABSFE
(from Definition 3.4).

• Hyb2: Same as Hyb1, except the challenger implements the adversary’s verification queries
using the following modified procedure. First, after A outputs a public key pk, the chal-
lenger computes k ← ABSFE.Ext(td, pk). The same key k is used when responding to
the subsequent verification queries. On a verification query (x,w) where R(x,w) = 1,
the challenger constructs a PCP π(PCP) ← zkPCP.Prove(x,w). It additionally computes

(stx, q1, . . . , q`)← zkPCP.Query(x;PRF(k, x)) and for each i ∈ [m], it sets zi ← π
(PCP)
i if i = qj

for some j ∈ [`] and zi ← 0 otherwise. It then computes cti ← ABSFE.Encrypt(crs, pk, (x, i), zi)
for each i ∈ [m] and outputs the proof π = (ct1, . . . , ctm).

This is computationally indistinguishable from Hyb1 by ciphertext indistinguishability of
ABSFE (from Definition 3.4). Namely, the only difference between Hyb1 and Hyb2 is that

in Hyb2, instead of computing the ciphertexts as cti ← ABSFE.Encrypt(crs, pk, (x, i), π
(PCP)
i)

when F ((x, i), k) = 0, the challenger instead computes cti ← ABSFE.Encrypt(crs, pk, (x, i), 0).
In the formal reduction, after the zero-knowledge adversary outputs its (possibly maliciously-
generated) public key, the ciphertext-indistinguishability adversary forwards pk to the chal-
lenger to obtain the PRF key k. Afterwards, the ciphertext indistinguishability adversary
uses his knowledge of k to issue challenge queries on all i ∈ [m] such that F ((x, i), k) = 0. In
particular, we assume that the adversary is able to make multiple challenge queries, all under
the same pk (see Remark 3.5).

• Hyb3: Same as Hyb2, except the challenger simulates the bits of the PCP using S(PCP)
instead of computing them via zkPCP.Prove. Specifically, on a verification query (x,w) where
R(x,w) = 1, after computing (stx, q1, . . . , q`) ← zkPCP.Prove(x;PRF(k, x)), the challenger

constructs a simulated PCP (π̃
(PCP)
1 , . . . , π̃

(PCP)
`)← S(PCP)(x, q1, . . . , q`). For each i ∈ [m], it

sets zi = π̃
(PCP)
i if i = qj for some j ∈ [`] and zi = 0 otherwise. The output is then computed

as in Hyb2. Notably, this is the ExptSimA,S(λ) experiment.

This is computationally indistinguishable from Hyb2 by zero-knowledge of zkPCP.

We conclude that the adversary’s output in the real distribution is computationally indistinguishable
from its output in the simulated distribution, and computational zero-knowledge against a malicious
verifier follows.

Remark 4.6 (DV-NIZKs in the Common Random String Model). If the public parameters of
ABSFE (i.e., the output of ABSFE.Setup) in Construction 4.1 are uniformly random strings, then
the resulting DV-NIZK is also in the common random string model. More generally, because we are
working with computational notions of soundness and zero-knowledge, this is true even if the public
parameters are only pseudorandom. In this case, computational soundness and zero-knowledge
would still follow by a standard hybrid argument, but completeness may be downgraded from perfect
to statistical.

27

5 Constructing AB-SFE Schemes

In this section, we describe several approaches to construct AB-SFE schemes satisfying different
flavors of message-hiding and key-hiding. First, in Section 5.1, we show how to build weak message-
hiding AB-SFE from any single-key ABE scheme. In Section 5.2, we show how to construct AB-SFE
schemes with strong message-hiding (and weak key-hiding) from receiver-extractable OT. Then,
in Section 5.3, we show how to generically boost an AB-SFE scheme satisfying weak key-hiding
into one that satisfies strong key-hiding (Definition 3.7) via a KDM-secure secret-key encryption
scheme (while preserving weak/strong message-hiding). Combining the constructions in Section 5.2
and 5.3, we obtain AB-SFE schemes that provide both strong message-hiding and strong key-hiding
(which suffice to realize our strongest notion of MDV-NIZK via Construction 4.1). Finally, in
Section 5.4, we describe how to instantiate the different building blocks from the CDH, DDH, or
LWE assumptions.

5.1 Weak Message-Hiding AB-SFE from Single-Key ABE

As noted in Section 1.3, an AB-SFE scheme can be viewed as a generalization of a single-key ABE
scheme. In this section, we describe two simple constructions of AB-SFE schemes from single-key
ABE schemes. Both of these schemes provide weak message-hiding.

Construction 5.1 (AB-SFE from Single-Key ABE). Take a function F : X × Y → {0, 1} and a
message space M. Let ABE be a single-key ABE scheme that supports evaluation of functions
of the form Fy(x) = F (x, y) (for hard-coded y) and with message space M (Definition 2.10). We
construct an AB-SFE scheme ABSFE as follows:

• ABSFE.Setup(1λ): Output crs = 1λ.

• ABSFE.KeyGen(crs, y): On input crs = 1λ, sample (pp,msk) ← ABE.Setup(1λ), compute
sky ← ABE.KeyGen(msk, Fy) for the function Fy(x) := F (x, y), and output (pp, sky).

• ABSFE.Encrypt(pk, x,m): Output ct← ABE.Encrypt(pk, x,m).

• ABSFE.Decrypt(sk, x, ct): Output m′ ← ABE.Decrypt(sk, x, ct).

Lemma 5.2 (AB-SFE from Single-Key ABE). If ABE is secure, then the AB-SFE scheme from
Construction 5.1 satisfies weak message-hiding and weak key-hiding.

Proof. Correctness follows immediately from correctness of ABE. Moreover, weak key-hiding is
immediate because an honestly generated (crs, pk = pp) is generated independently of y. Finally,
weak message-hiding follows immediately via semantic security of ABE.

Corollary 5.3 (AB-SFE from Public-Key Encryption). Assuming public-key encryption exists,
then for any function ensemble F = {Fλ} computable by a family of polynomial-size circuits, there
is an AB-SFE scheme for F that satisfies weak message-hiding and weak key-hiding.

Proof. We can instantiate a single-key ABE scheme (for general predicates) using any public-key
encryption scheme [SS10, GVW12]. The claim then follows by Lemma 5.2.

Remark 5.4 (Strong Key-Hiding AB-SFE from Weakly Function-Private ABE). Similarly, any
single-key ABE scheme satisfying weak function hiding (Definition 2.13) directly implies the existence
of an AB-SFE scheme satisfying weak message-hiding and strong key-hiding (Definition 3.7).

28

5.2 Strong Message-Hiding AB-SFE from Receiver-Extractable OT

Towards our goal of obtaining a malicious-designated-verifier NIZK, we show in this section how to
construct an AB-SFE scheme that provides strong message-hiding from any receiver-extractable
2-message OT scheme (Definition 2.14). The resulting scheme satisfies weak key-hiding, and we
show how to amplify key-hiding security in Section 5.3.

Construction 5.5 (Strong Message-Hiding AB-SFE from OT). Take a function F : X ×Y → {0, 1}
and a message space M. Our construction relies on the following ingredients:

• For an attribute x ∈ X and a message m ∈ M, let Cx,m : Y → M∪ {⊥} be a circuit that
on input y′ outputs m if F (x, y′) = 1 and ⊥ otherwise. Let ` = poly(λ) be a bound on the
bit-length of elements in Y.

• Let Yao = (Yao.Garble,Yao.Eval) be a garbling scheme (Definition 2.20) that supports the
circuit class C = {x ∈ X ,m ∈M : Cx,m}.

• Let OT = (OT.Setup,OT1,OT2,OT.Receive) be a receiver-extractable 2-message batch OT
scheme on k-bit messages with batch size ` (Definition 2.14, Remark 2.18), where k = poly(λ)
is a bound on the length of the labels output by Yao. Let {0, 1}τ be the randomness space for
the first OT message.

We construct an AB-SFE scheme as follows:

• ABSFE.Setup(1λ): Output crs← OT.Setup(1λ).

• ABSFE.KeyGen(crs, y): Sample sk = r
r← {0, 1}τ , and set pk← OT1(crs, y; r). Output (pk, sk).

• ABSFE.Encrypt(crs, pk, x,m): Compute (C̃x,m, lab) ← Yao.Garble(1λ, Cx,m), where lab =
{labi,b}i∈[`],b∈{0,1} and labi,b ∈ {0, 1}t for all i ∈ [`] and b ∈ {0, 1}. Output the ciphertext

ct = (C̃x,m,OT2(crs, pk, lab)).

• ABSFE.Decrypt(crs, sk, x, ct): On input the common reference string crs, a secret key sk = r,
an attribute x ∈ X , and a ciphertext ct = (C̃, ct′), the decryption algorithm computes
−→
lab← OT.Receive(crs, r, ct′) and outputs Yao.Eval(C̃,

−→
lab).

Theorem 5.6 (Strong Message-Hiding AB-SFE from OT). If Yao is a secure garbling scheme
and OT is a receiver-extractable 2-message batch OT scheme on k-bit messages, then the AB-SFE
scheme ABSFE from Construction 5.5 satisfies strong message-hiding and weak key-hiding.

Proof. We show each property individually:

Correctness. Correctness of ABSFE follows immediately from the correctness properties of OT
and Yao, respectively.

Weak key-hiding. Follows immediately from receiver privacy of OT.

Strong message-hiding. We first define the extraction algorithms (ABSFE.SetupExt,ABSFE.Ext):

• ABSFE.SetupExt(1λ): Output (crs, td)← OT.SetupExt(1λ)

• ABSFE.Ext(td, pk): Output OT.Ext(td, pk)

29

We now show that strong message-hiding follows from the extractable sender privacy of OT and
security of Yao. First, CRS indistinguishability for ABSFE follows from CRS indistinguishability of
OT. To argue ciphertext indistinguishability, we use the following hybrid argument:

• Hyb0: This is the ciphertext indistinguishability game for ABSFE. Namely, the challenger
begins by sampling (crs, td) ← OT.SetupExt(1λ) and gives crs to A. The adversary chooses
a public key pk and the challenger replies with y ← OT.Ext(td, pk). Finally, when the ad-
versary makes a challenge query (x,m0,m1), the challenger garbles (C̃, {labi,b}i∈[n],b∈{0,1})←
Yao.Garble(1λ, Cx,mb

) and replies with the ciphertext ct′b = (C̃,OT2(crs, pk, {labi,b}i∈[n],b∈{0,1})).

• Hyb1: Same as Hyb0 except the challenger instead constructs the challenge ciphertext as
ct′b ← (C̃,OT2(crs, pk, {(labi,yi , labi,yi)}i∈[n])).

Hybrids Hyb0 and Hyb1 are computationally indistinguishable by sender privacy of OT in
extraction mode.

• Hyb2: Same as Hyb1, except instead of sampling (C̃, {labi,b}i∈[n],b∈{0,1})← Yao.Garble(1λ, Cx,mb
),

the challenger uses the simulator S for Yao to sample the garbled circuit. Namely, the chal-
lenger samples (C̃, {labi}i∈[n])← Sim(1t, 1n, 0), where t is a bound on the size of the circuit in

C, and sets ct′b ← (C̃,OT2(crs, pk, {(labi, labi)}i∈[n])).

Hybrids Hyb1 and Hyb2 are computationally indistinguishable by security of Yao.

Adversary A’s view in hybrid Hyb2 does not depend on the challenge bit b, and the claim follows.

5.3 Amplifying Weak Key-Hiding AB-SFE to Strong Key-Hiding AB-SFE

We now show how to generically upgrade weak key-hiding to strong key-hiding via KDM-secure
secret-key encryption (Definition 2.24) and an equivocable non-interactive commitment scheme
(Definition 2.22) [CIO98]. Before presenting our main construction, we first define a useful property
on PKE and AB-SFE schemes that we will use in our construction.

Definition 5.7 (Recovery from Randomness [KW18b]). A public-key encryption scheme PKE =
(PKE.KeyGen,PKE.Encrypt,PKE.Decrypt) with message space M satisfies the recover from random-
ness property if there exists an efficient algorithm PKE.Recover with the following property:

• PKE.Recover(pk, ct, r) → m/⊥: On input a public key pk, a ciphertext ct, and a string r,
output a message m ∈M or ⊥.

Then, for all messages m ∈ M, if (pk, sk) ← PKE.KeyGen(1λ), ct ← PKE.Encrypt(pk,m; r), then
Recover(pk, ct, r) = m. Alternatively, if there is no pair (m, r) where ct = PKE.Encrypt(pk,m; r),
then Recover(pk, ct, r) = ⊥. We extend this definition to the AB-SFE setting accordingly: in
this case, ABSFE.Recover(crs, pk, ct, r) either outputs (x,m) if ct = ABSFE.Encrypt(crs, pk, x,m; r)
and ⊥ if there does not exist any (x,m) such that ct = ABSFE.Encrypt(crs, pk, x,m; r).

Remark 5.8 (Recovery from Randomness [KW18b]). It is straightforward to upgrade any PKE
(resp., AB-SFE) scheme to have the recovery from randomness property. As noted in [KW18b], we
simply modify the encryption algorithm to use part of the encryption randomness to construct a
symmetric encryption of the underlying message (resp., underlying attribute-message pair).

30

Construction 5.9 (Weak Key-Hiding to Strong Key-Hiding). Let ABSFE be an AB-SFE scheme
for F : X × Y → {0, 1} with message space M that satisfies weak key-hiding and the recovery from
randomness property (Definition 5.7, Remark 5.8). To construct an AB-SFE scheme satisfying
strong key-hiding, we additionally rely on the following building blocks:

• Let PKE be a public-key encryption scheme with message space {0, 1}λ and which supports
the recovery from randomness property (Definition 2.2, Remark 5.8).

• Let ` = `(λ) be a bound on the number of bits of randomness PKE.Encrypt and ABSFE.Encrypt
use.

• Let SKE denote a secret-key encryption scheme with message-space M× {0, 1}`λ that is
one-time KDM-secure for the class of projection functions (Definition 2.24, Remark 2.25).

• Let Com be a non-interactive equivocable commitment scheme with message space {0, 1}
(Definition 2.22).

We construct an augmented AB-SFE scheme Aug as follows:

• Aug.Setup(1λ): Sample ABSFE.crs ← ABSFE.Setup(1λ), (PKE.pk,PKE.sk) ← PKE.Gen(1λ),
and for each i ∈ [λ], Com.crsi ← Com.Setup(1λ). It outputs the common reference string
crs = (ABSFE.crs,PKE.pk, {Com.crsi}i∈[λ]).

• Aug.KeyGen(crs, y): On input crs = (ABSFE.crs,PKE.pk, {Com.crsi}i∈[λ]), sample an AB-SFE
key-pair (ABSFE.pk,ABSFE.sk) ← ABSFE.KeyGen(ABSFE.crs, y) and output the public key
pk = ABSFE.pk and the secret key sk = (y,ABSFE.pk,ABSFE.sk).

• Aug.Encrypt(crs, pk, x,m): Parse crs = (ABSFE.crs,PKE.pk, {Com.crsi}i∈[λ]) and pk = ABSFE.pk,
and proceed as follows:

– Sample a secret key s
r← {0, 1}λ for SKE.

– For every i ∈ [λ], sample ρi
r← {0, 1}λ and compute ci ← Com.Commit(Com.crsi, si; ρi).

– For every i ∈ [λ], define Mi,si = ρi and Mi,1−si = ⊥. Then, sample Ri,0, Ri,1
r← {0, 1}`

and construct the ciphertexts

cti,0 ← ABSFE.Encrypt(ABSFE.crs,ABSFE.pk, x,Mi,0;Ri,0)

cti,1 ← PKE.Encrypt(PKE.pk,Mi,1;Ri,1).

– Let ct0 ← SKE.Encrypt(s, (m, (Ri,si)i∈[λ])).

– Output ct =
(
ct0, (ci, cti,0, cti,1)i∈[λ]

)
.

• Aug.Decrypt(crs, sk, x, ct): On input crs = (ABSFE.crs,PKE.pk, {Com.crsi}i∈[λ]), a secret key
sk = (y,ABSFE.pk,ABSFE.sk), and a ciphertext ct =

(
ct0, (ci, cti,0, cti,1)i∈[λ]

)
, proceed as

follows:

1. If F (x, y) = 0, output ⊥.

2. For every i ∈ [λ], compute ρ′i ← ABSFE.Decrypt(ABSFE.crs,ABSFE.sk, x, cti,0). If ρ′i 6= ⊥
and Com.Commit(Com.crsi, 0; ρ′i) = ci, set s′i = 0; otherwise, set s′i = 1.

31

3. Compute (m′, (r′i)i∈[λ])← SKE.Decrypt(s′, ct0).

4. For every i ∈ [λ], perform the following checks:

– If s′i = 0, then check if Recover(ABSFE.crs,ABSFE.pk, cti,0, r
′
i) = (x, ρ̃i) for some ρ̃i,

and output ⊥ if the check fails.

– If s′i = 1, then compute ρ̃i ← PKE.Recover(PKE.pk, cti,1, r
′
i) and output ⊥ if the

recovery procedure fails.

– Finally, check if ci = Com.Commit(Com.crsi, s
′
i; ρ̃i). Output ⊥ if this check fails.

5. If all checks pass, output m′.

Theorem 5.10 (Correctness). If ABSFE and PKE is (perfectly) correct, then the AB-SFE scheme
Aug from Construction 5.9 is also (perfectly) correct.

Proof. Follows immediately by correctness of ABSFE and PKE.

Theorem 5.11 (Strong Key-Hiding). If ABSFE satisfies weak key-hiding, and Com is statistically-
binding, then the AB-SFE scheme Aug from Construction 5.9 satisfies strong key-hiding.

Proof. Let Sweak be the weak key-hiding simulator for ABSFE. We construct a strong key-hiding
simulator (S1,S2) as follows:

• S1(1λ): Run (ABSFE.crs,ABSFE.pk) ← Sweak(1λ). Then, sample PKE.pk, PKE.sk, and
{Com.crsi}i∈[λ] as in Aug.Setup(1λ), and set

crs = (ABSFE.crs,PKE.pk, {Com.crsi}i∈[λ]).

Output stS = (crs,ABSFE.pk,PKE.sk), crs, and pk = ABSFE.pk.

• S2(stS , x, ct, β): Parse stS = (crs,ABSFE.pk,PKE.sk), crs = (ABSFE.crs,PKE.pk, {Com.crsi}i∈[λ])
and ct =

(
ct0, (ci, cti,0, cti,1)i∈[λ]

)
, and proceed as follows:

1. If β = 0, output ⊥.

2. For every i ∈ [λ], decrypt ρ′i ← PKE.Decrypt(PKE.sk, cti,1). If ρ′i 6= ⊥ and moreover,
Com.Commit(Com.crsi, 1; ρ′i) = ci, set s′i = 1; otherwise, set s′i = 0.

3. Compute (m′, (r′i)i∈[λ])← SKE.Decrypt(s′, ct0).

4. For every i ∈ [λ], perform the following checks:

– If s′i = 0, then check if Recover(ABSFE.crs,ABSFE.pk, cti,0, r
′
i) = (x, ρ̃i) for some ρ̃i,

and output ⊥ if the check fails.

– If s′i = 1, then compute ρ̃i ← PKE.Recover(PKE.pk, cti,1, r
′
i) and output ⊥ if the

recovery procedure fails.

– Finally, check if ci = Com.Commit(Com.crsi, s
′
i; ρ̃i). Output ⊥ if this check fails.

5. If all checks pass, output m′.

To argue that the simulator satisfies the desired properties, we define the following sequence of
hybrid experiments between a challenger and an adversary A:

• Hyb0: This is the real distribution where crs← Aug.Setup(1λ), and (pk, sk)← Aug.KeyGen(crs, y).
The oracle queries are handled by computing Aug.Decrypt(crs, sk, x, ct). At the end of the
experiment, A outputs a bit, which is the output of the experiment, denoted Hyb0(A).

32

• Hyb1: Same as Hyb0, except we use S2 to implement the decryption queries (but leaves crs, pk
unchanged). Namely, in this experiment, the challenger still samples crs← Aug.Setup(1λ) and
(pk, sk) ← Aug.KeyGen(crs, y). It also sets stS = (crs,ABSFE.pk,PKE.sk). When responding
to the adversary’s oracle queries (x, ct), the challenger computes S2(stS , x, ct, F (x, y)).

We show in Lemma 5.12 that Hyb0 and Hyb1 are computationally indistinguishable.

• Hyb2: Same as Hyb1, except the simulator uses Sweak to sample the components ABSFE.crs
and ABSFE.pk in crs, pk, and stS . This is the simulated distribution.

This is computationally indistinguishable from Hyb1 since ABSFE satisfies weak key-hiding.

Lemma 5.12. If Com is statistically binding, and if ABSFE and PKE have perfect decryption
correctness, then for all adversaries A, the outputs of Hyb0(A) and Hyb1(A) are statistically
indistinguishable.

Proof. Since Hyb0 and Hyb1 only differ in how the decryption queries are handled, it suffices to
argue that the challenger’s response to each of the adversary’s decryption queries are identical with
overwhelming probability. Consider a decryption query (x, ct) where ct =

(
ct0,

(
ci, cti,0, cti,1

)
i∈[λ]

)
.

First, if F (x, y) = 0, then in both Hyb0 and Hyb1, the challenger replies with ⊥. We consider the
case where F (x, y) = 1. First, we argue that with overwhelming probability, the challenger either
recovers the same seed s′ ∈ {0, 1}n in both Hyb0 and Hyb1, or outputs ⊥ in both experiments.

• Suppose the challenger sets s′i = 0 in Hyb0 (without aborting). This means the challenger
obtained ρ′i and r′i where cti,0 = ABSFE.Encrypt(ABSFE.crs,ABSFE.pk, ρ′i; r

′
i) and in addition,

ci = Com.Commit(Com.crsi, 0; ρ′i). Since the commitment scheme is statistically binding,
with overwhelming probability over the choice of Com.crsi, there does not exist ρ∗ such that
ci = Com.Commit(Com.crsi, 1, ρ

∗). Hence, the challenger in Hyb1 will also set s′i = 0.

• Suppose the challenger sets s′i = 1 in Hyb0 (without aborting). This means that the chal-
lenger must have recovered ρ̃i and r′i such that cti,1 = PKE.Encrypt(PKE.pk, ρ̃i; r

′
i) and

ci = Com.Commit(Com.crsi, 1; ρ̃i). By correctness of PKE, the challenger in Hyb1 also sets
s′i = 1.

Thus, we see that if the challenger recovers s′ in Hyb0 in a successful decryption query, then with
overwhelming probability, it recovers the same s′ in Hyb1. Because the decryption procedures in
Hyb0 and Hyb1 are identical after the recovery of s′, this means that it also outputs the same
message in Hyb1 as it does in Hyb0. By an entirely analogous argument, the converse also holds,
so we conclude that with overwhelming probability, the challenger responds identically to each
decryption query in Hyb0 and Hyb1. The claim then follows by a union bound over the total number
of decryption queries the adversary makes.

We conclude that the outputs of Hyb0 and Hyb2 are computationally indistinguishable.

Remark 5.13 (Relaxing Perfect Correctness). Although our proof of Lemma 5.12 seems to rely on
the perfect decryption correctness of ABSFE and PKE, it suffices for the two encryption schemes to
satisfy the following weaker notion of correctness: with probability 1− negl(λ) over the choice of
public parameters, decryption is perfectly correct over the choice of encryption randomness r. This
is the notion of almost-all-keys perfect correctness from [DNR04]. This will be important later for
our LPN-based instantiation.

33

Theorem 5.14 (Message-Hiding). If ABSFE satisfies weak message-hiding (resp., strong message-
hiding), PKE is semantically secure, SKE is one-time KDM-secure for the class of projection functions,
and Com is equivocable, then the AB-SFE scheme Aug from Construction 5.9 also satisfies weak
message-hiding (resp., strong message-hiding).

Proof. We show the claim for the setting where ABSFE satisfies strong message-hiding. The case
where ABSFE satisfies weak message-hiding follows by the same hybrid structure (and without the
additional need to define an extraction algorithm). By assumption, since ABSFE satisfies strong
message-hiding, there exist efficient algorithms (ABSFE.SetupExt,ABSFE.Ext) with the properties
from Definition 3.4. We use these to define the extraction algorithms (Aug.SetupExt,Aug.Ext):

• Aug.SetupExt(1λ): Call (ABSFE.crs,ABSFE.td) ← ABSFE.SetupExt(1λ) and output (crs, td)
where crs = (ABSFE.crs,PKE.pk, {Com.crsi}i∈[λ]), where the other components are generated
using the same procedure as in Aug.Setup and td = ABSFE.td.

• Aug.Ext(td, pk): Output ABSFE.Ext(td, pk).

CRS indistinguishability for (Aug.Setup,Aug.SetupExt) follows immediately from the same property
for ABSFE. It remains to show ciphertext indistinguishability. We use the following sequence of
hybrid experiments:

• Hyb0: This is the ciphertext indistinguishability game for Aug.

• Hyb1: Same as Hyb0, except the challenger substitutes equivocable commitments for real
commitments. Namely, at the beginning of the game, the challenger samples for each i ∈ [λ],
(Com.crsi, c̄i, tdi)← Com.SetupEquiv(1λ), and uses Com.crsi in place of Com.crsi in the crs and
c̄i in place of ci when constructing the challenge ciphertext. In addition, when constructing
the challenge ciphertexts, the challenger instead computes ρi ← Com.Equivocate(tdi, si, c̄i).

This is computationally indistinguishable from Hyb0 by the equivocation property of Com.

• Hyb2: Same as Hyb1, except that when computing the challenge ciphertext, instead of setting
Mi,1−si = ⊥, the challenger computes ρ′i ← Com.Equivocate(tdi, 1−si, c̃i) and sets Mi,1−si = ρ′i.

This is computationally indistinguishable from Hyb1 by semantic security of PKE and strong
message-hiding security of ABSFE (where the challenge public key pk, the extracted value
y ← ABSFE.Ext(td, pk) and the challenge attribute x ∈ X are the same in both the base
scheme ABSFE and Aug, and satisfy F (x, y) = 0). In particular, by construction, Ri,1−si is
uniformly random and does not appear elsewhere in the experiment. Thus, each cti,1−si is an
honestly-generated encryption of Mi,1−si under either PKE or ABSFE.

• Hyb3: Same as Hyb2, except that when computing the challenge ciphertext, the challenger
simply sets Mi,b ← Com.Equivocate(tdi, b, c̃i) for all i ∈ [λ] and b ∈ {0, 1}. Namely Mi,b no
longer depends on s.

This is just a relabeling of indices and this experiment is identical to Hyb3. Namely in Hyb2,
Mi,si = ρi ← Com.Equivocate(tdi, si, ci) and Mi,1−si = ρ′i ← Com.Equivocate(tdi, 1− si, ci).

34

• Hyb4: Same as Hyb3, except the challenger computes ct0 ← SKE.Encrypt(s, 0k+λ`) for the
challenge ciphertext, where k is the bit-length of messages in M.

This is computationally indistinguishable from Hyb3 by the KDM-security of SKE. In particular,
note that the plaintext (m, (Ri,si)i∈[λ]) is a projection function of s.

Finally, any adversary’s view in Hyb4 is independent of the message m, and the claim follows.

5.4 Instantiations

In this section, we describe how to instantiate each of the building blocks needed to obtain an
AB-SFE scheme satisfying strong key-hiding and strong (respectively, weak) message-hiding from

either the CDH assumption, the LWE assumption, or the LPN assumption with noise rate n−(
1
2
+ε)

(respectively, the CDH assumption, the LWE assumption, or the LPN assumption with noise rate
O(1/

√
n)). All of our LWE-based instantiations can use a polynomial modulus-to-noise ratio.

The resulting weak message-hiding AB-SFE instantiations correspondingly yield designated-
verifier NIZKs. Moreover, the resulting strong message-hiding AB-SFE schemes have uniformly
random public parameters, thus yielding designated-verifier NIZKs with security against malicious
verifiers in the common random string model. We instantiate each building block as follows:

• By Theorem 2.19 and Remark 2.18, there exists a receiver-extractable 2-message batch OT
scheme in the common random string model under the CDH/LWE/LPN assumptions (with the
parameters specified above). By Theorem 2.21, there exists a garbling scheme from one-way
functions. Thus, by Theorem 5.6, we obtain an AB-SFE scheme with strong message-hiding
and weak key-hiding under the CDH/LWE/LPN assumptions in the common random string
model.

• There exist public-key encryption schemes with pseudorandom (or uniformly random) public
keys from the CDH assumption [Gam84], the LWE assumption [Reg05], or the LPN assump-
tion [Ale03] with the parameters specified above. Because we only use the associated secret
key in the proof of security, we can replace the public key PKE.pk from Construction 5.9 with
a uniformly random string, while maintaining security (by a standard hybrid argument) and
perfect correctness.

• By Lemma 5.3, there exists an AB-SFE scheme with weak message-hiding and weak key-hiding
under any assumption implying PKE.

• By Remark 2.25, there exists a KDM-secure secret-key encryption scheme for projection
functions under the CDH assumption, the LWE assumption, or the LPN assumption with
constant noise rate.

• By Theorem 2.23, there exists a non-interactive equivocable commitment scheme from one-way
functions in the common random string model.

Remark 5.15 (Almost-All-Keys Perfect Decryption Correctness). Some of the PKE/OT schemes
above (such as the PKE scheme of [Ale03]) do not actually satisfy perfect decryption correctness as
required by Definition 2.2. However, the transformation of [DNR04] shows that these encryption
schemes can be modified to satisfy the following “almost-all-keys perfect correctness” property: with

35

probability 1− negl(λ) over the randomness of PKE.KeyGen(·), decryption is perfectly correct with
probability 1 over the choice of encryption randomness. Encryption schemes satisfying this notion
of almost-all-keys perfect correctness suffice for all of the constructions in this paper (Remark 5.13).

Instantiations. Combining the above primitives in Construction 5.9, we now obtain the following
corollaries. In all cases, we only rely on polynomial hardness of the underlying assumption.

Corollary 5.16 (Weak Message-Hiding, Strong Key-Hiding AB-SFE from LPN). Assuming poly-
nomial hardness of the LPN assumption with noise rate O(1√

n
), there exists an AB-SFE scheme

with that satisfies strong key-hiding and weak message-hiding.

Corollary 5.17 (Strong Message-Hiding, Strong Key-Hiding AB-SFE from CDH/LWE/LPN).

Assuming polynomial hardness of either CDH, LWE, or LPN with noise rate n−(
1
2
+ε) for any

ε > 0, there exists an AB-SFE scheme with uniformly random public parameters that satisfies strong
key-hiding and strong message-hiding security.

Combining Theorem 2.7 now with Construction 4.1 (and Remarks 4.4 and 4.6), we obtain the
following instantiations of designated-verifier NIZKs:

Corollary 5.18 (Designated-Verifier NIZKs from LPN). Assuming polynomial hardness of the
LPN assumption with noise rate O(1√

n
), there exists a designated-verifier NIZK argument for NP

that is adaptively sound and provides computational zero-knowledge in the common reference string
model.

Corollary 5.19 (Malicious-Designated-Verifier NIZKs from CDH/LWE/LPN). Assuming polyno-

mial hardness of either CDH, LWE, or LPN with noise rate n−(
1
2
+ε) for any ε > 0, there exists

a designated-verifier NIZK argument for NP that is adaptively sound and provides computational
zero-knowledge against malicious verifiers in the common random string model.

Acknowledgments

We thank Yuval Ishai and Brent Waters for many helpful discussions and comments on this work.

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard
model. In EUROCRYPT, pages 553–572, 2010.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In CRYPTO,
pages 595–618, 2009.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In ICALP, pages
1–9, 1999.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In FOCS,
pages 298–307, 2003.

36

[AP09] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. In
STACS, pages 75–86, 2009.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption
without random oracles. In EUROCRYPT, pages 223–238, 2004.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE.
In ACM CCS, pages 896–912, 2018.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its
applications (extended abstract). In STOC, pages 103–112, 1988.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev,
Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic
encryption, arithmetic circuit ABE and compact garbled circuits. In EUROCRYPT,
pages 533–556, 2014.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure
encryption from decision diffie-hellman. In CRYPTO, pages 108–125, 2008.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits.
In ACM CCS, pages 784–796, 2012.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In STOC, pages 575–584, 2013.

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anonymous
IBE, leakage resilience and circular security from new assumptions. In EUROCRYPT,
pages 535–564, 2018.

[Blu86] Manuel Blum. How to prove a theorem so no one else can claim it. In Proceedings of
the International Congress of Mathematicians, volume 1, page 2, 1986.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In EUROCRYPT, pages 719–737, 2012.

[CCH+18] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, and
Ron D. Rothblum. Fiat-Shamir from simpler assumptions. IACR Cryptology ePrint
Archive, 2018:1004, 2018.

[CDI+19] Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tianren Liu, Rafail
Ostrovsky, and Vinod Vaikuntanathan. Reusable non-interactive secure computation.
In CRYPTO, 2019.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In CRYPTO, pages 174–187, 1994.

[CH19] Geoffroy Couteau and Dennis Hofheinz. Designated-verifier pseudorandom generators,
and their applications. In EUROCRYPT, 2019.

37

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption
scheme. IACR Cryptology ePrint Archive, 2003:83, 2003.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. In EUROCRYPT, pages 523–552, 2010.

[CIO98] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-interactive and non-
malleable commitment. In STOC, pages 141–150, 1998.

[CLW18] Ran Canetti, Alex Lombardi, and Daniel Wichs. Fiat-Shamir: From practice to theory,
part ii (NIZK and correlation intractability from circular-secure FHE). IACR Cryptology
ePrint Archive, 2018:1248, 2018.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In CRYPTO, pages 13–25, 1998.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In EUROCRYPT, pages 45–64, 2002.

[DG17] Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-Hellman
assumption. In CRYPTO, pages 537–569, 2017.

[DGH+19] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny, and Daniel Wichs.
Two-round oblivious transfer from CDH or LPN. IACR Cryptology ePrint Archive,
2019, 2019.

[DGHM18] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel Masny. New construc-
tions of identity-based and key-dependent message secure encryption schemes. In PKC,
pages 3–31, 2018.

[DNR04] Cynthia Dwork, Moni Naor, and Omer Reingold. Immunizing encryption schemes from
decryption errors. In EUROCRYPT, pages 342–360, 2004.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. In EUROCRYPT, pages 523–540,
2004.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs under general assumptions. SIAM J. Comput., 29(1):1–28, 1999.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO, pages 186–194, 1986.

[Gam84] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In CRYPTO, pages 10–18, 1984.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions
(extended abstract). In FOCS, pages 464–479, 1984.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

38

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design (extended abstract). In
FOCS, pages 174–187, 1986.

[Gol11] Oded Goldreich. Basing non-interactive zero-knowledge on (enhanced) trapdoor permu-
tations: The state of the art. In Studies in Complexity and Cryptography. Miscellanea
on the Interplay between Randomness and Computation, pages 406–421. Springer, 2011.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive Zaps and new techniques
for NIZK. In CRYPTO, pages 97–111, 2006.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based en-
cryption for fine-grained access control of encrypted data. In ACM CCS, pages 89–98,
2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, pages 197–206, 2008.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In CRYPTO, pages 162–179,
2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption
for circuits. In STOC, pages 545–554, 2013.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from
secure multiparty computation. In STOC, pages 21–30, 2007.

[IMS12] Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. On efficient zero-knowledge
PCPs. In TCC, pages 151–168, 2012.

[KM19] Fuyuki Kitagawa and Takahiro Matsuda. Cpa-to-cca transformation for kdm security.
IACR Cryptology ePrint Archive, 2019:609, 2019. https://eprint.iacr.org/2019/

609.

[KMT19] Fuyuki Kitagawa, Takahiro Matsuda, and Keisuke Tanaka. Cca security and trapdoor
functions via key-dependent-message security. In CRYPTO, 2019. https://eprint.

iacr.org/2019/291.

[KNYY19] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Desig-
nated verifier/prover and preprocessing NIZKs from Diffie-Hellman assumptions. In
EUROCRYPT, 2019.

[KPT97] Joe Kilian, Erez Petrank, and Gábor Tardos. Probabilistically checkable proofs with
zero knowledge. In STOC, pages 496–505, 1997.

[KW18a] Sam Kim and David J. Wu. Multi-theorem preprocessing NIZKs from lattices. In
CRYPTO, pages 733–765, 2018.

39

https://eprint.iacr.org/2019/609
https://eprint.iacr.org/2019/609
https://eprint.iacr.org/2019/291
https://eprint.iacr.org/2019/291

[KW18b] Venkata Koppula and Brent Waters. Realizing chosen ciphertext security generically in
attribute-based encryption and predicate encryption. IACR Cryptology ePrint Archive,
2018:847, 2018.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yaos protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, 2009.

[LQR+19] Alex Lombardi, Willy Quach, Ron D. Rothblum, Daniel Wichs, and David J. Wu. New
constructions of reusable designated-verifier NIZKs. IACR Cryptology ePrint Archive,
2019, 2019. Preliminary Version: https://eprint.iacr.org/2019/242/20190228:

191300.

[LW15] Vadim Lyubashevsky and Daniel Wichs. Simple lattice trapdoor sampling from a broad
class of distributions. In PKC, pages 716–730, 2015.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample complexity
of LWE search-to-decision reductions. In CRYPTO, pages 465–484, 2011.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In EUROCRYPT, pages 700–718, 2012.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158,
1991.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In STOC, pages 427–437, 1990.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In STOC, pages 333–342, 2009.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. IACR Cryptology ePrint Archive, 2019:158, 2019.

[PsV06] Rafael Pass, abhi shelat, and Vinod Vaikuntanathan. Construction of a non-malleable
encryption scheme from any semantically secure one. In CRYPTO, pages 271–289, 2006.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and
composable oblivious transfer. In CRYPTO, pages 554–571, 2008.

[QRW19] Willy Quach, Ron D. Rothblum, and Daniel Wichs. Reusable designated-verifier NIZKs
for all NP from CDH. In EUROCRYPT, 2019.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, pages 84–93, 2005.

[SCO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and
Amit Sahai. Robust non-interactive zero knowledge. In CRYPTO, pages 566–598, 2001.

[SMP87] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-knowledge
proof systems. In CRYPTO, pages 52–72, 1987.

40

https://eprint.iacr.org/2019/242/20190228:191300
https://eprint.iacr.org/2019/242/20190228:191300

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In ACM CCS, pages 463–472, 2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
pages 457–473, 2005.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162–167, 1986.

A Adaptive Soundness via Trapdoor Zero-Knowledge PCPs

In this section, we describe how to achieve adaptive soundness in our protocols by relying on the
trapdoor Σ-protocols from [CLW18, §6]. We present our construction more generally in the language
of zero-knowledge PCPs by first defining the notion of a “trapdoor zero-knowledge PCP.” At a
high-level, a trapdoor zero-knowledge PCP for an NP language L has the following properties:

• Without loss of generality, we allow the prover algorithm to output some auxiliary data aux
together with the PCP π. The verifier is given the auxiliary data aux in addition to its chosen
bits of π. This is just for notational convenience since we can always include aux as part of
the PCP, and have the verifier always read the bits corresponding to aux.

• We allow the prover and verifier algorithms to take a common reference (or random) string
crs as additional input.

• For every choice of common reference string crs, every false statement x /∈ L, every choice
of auxiliary data aux, and every proof string π ∈ Σm, there exists exactly one setting of
the randomness r = f(crs, x, aux) such that zkPCP.Verify(crs, aux, stx, πq1 , . . . , πq`) = 1, where
(stx, q1, . . . , q`)← zkPCP.Query(crs, x). Note that f does not have to be efficiently-computable,
but becomes efficiently computable with knowledge of a trapdoor (associated with the crs).

We define the notion more formally below:

Definition A.1 (Trapdoor Zero-Knowledge PCP). Let R : {0, 1}n × {0, 1}h → {0, 1} be an NP
relation and L ⊆ {0, 1}n be the associated language. A non-adaptive, `-query trapdoor zero-
knowledge PCP (with alphabet Σ) for L is a tuple of algorithms zkPCP = (zkPCP.Setup, zkPCP.Prove,
zkPCP.Query, zkPCP.Verify) with the following properties:

• zkPCP.Setup(1λ) → crs: On input a security parameter λ, the setup algorithm outputs a
common reference string crs.

• zkPCP.Prove(crs, x, w) → (aux, π): On input the common reference string crs, a statement
x ∈ {0, 1}n, and a witness w ∈ {0, 1}h, the prove algorithm outputs some auxiliary data aux
and a proof π ∈ Σm.

• zkPCP.Query(crs, x)→ (stx, q1, . . . , q`): On input the common reference string crs, a statement
x ∈ {0, 1}n, the query-generation algorithm outputs a verification state stx and ` query indices
q1, . . . , q` ∈ [m].

41

• zkPCP.Verify(crs, stx, aux, s1, . . . , s`) → {0, 1}: On input the common reference string crs, a
verification state stx, auxiliary proof data aux, and a set of responses s1, . . . , s` ∈ Σ, the verify
algorithm outputs a bit b ∈ {0, 1}.

Moreover, zkPCP should satisfy the following properties:

• Efficiency: The running times of zkPCP.Setup zkPCP.Prove, zkPCP.Query, and zkPCP.Verify
are poly(λ).

• Completeness: For all x ∈ {0, 1}n and w ∈ {0, 1}h where R(x,w) = 1,

Pr[zkPCP.Verify(crs, aux, stx, πq1 , . . . , πq`) = 1] = 1,

where crs ← zkPCP.Setup(1λ), (aux, π) ← zkPCP.Prove(crs, x, w) and (stx, q1, . . . , q`) ←
zkPCP.Query(crs, x).

• Soundness: There exist a function f (not necessarily efficiently-computable), such that for
all common reference strings crs, all x /∈ L, all auxiliary data aux, and all proof strings π ∈ Σm,
for all r 6= f(crs, x, aux),

zkPCP.Verify(crs, aux, stx, πq1 , . . . , πq`) = 0,

where (stx, q1, . . . , q`)← zkPCP.Query(crs, x; r).

• Zero-knowledge: For a security parameter λ an adversary A, and a simulator S = (S1,S2),
let ExptZK,A,S(λ, b) as follows:

– Setup: If b = 0, then the challenger samples crs ← zkPCP.Setup(1λ). If b = 1, the
challenger samples (stS , crs)← S1(1λ). It gives the common reference string crs to A.

– Challenge: The adversary A outputs a statement x ∈ {0, 1}n, a witness w ∈ {0, 1}h
and a collection of ` indices q1, . . . , q` ∈ [m]. If R(x,w) = 0, then the challenger
aborts and outputs 0. Otherwise, if b = 0, the challenger computes (aux, π) ←
zkPCP.Prove(crs, x, w) and replies to A with (aux, πq1,, . . . , πq`). If b = 1, the challenger
replies with (aux, π1, . . . , π`)← S2(stS , x, q1, . . . , q`).

– Output: At the end of the experiment, A outputs a bit b′ ∈ {0, 1}, which is also the
output of the experiment.

We say that zkPCP provides (semi-malicious) zero-knowledge if for all PPT (semi-malicious)
adversaries, there exists a PPT simulator S = (S1,S2) such that∣∣Pr[ExptZK,A,S(λ, 0) = 1]− Pr[ExptZK,A,S(λ, 1) = 1]

∣∣ = negl(λ).

• Trapdoor generation: There exist PPT algorithms (zkPCP.TrapGen, zkPCP.BadRandomness)
defined as follows:

– zkPCP.TrapGen(1λ) → (crs, td): On input the security parameter λ, the trapdoor-
generation algorithm outputs a simulated reference string crs and a trapdoor td.

– zkPCP.BadRandomness(crs, td, x, aux) → r: On input a common reference string crs, a
trapdoor td, an instance x ∈ {0, 1}n and auxiliary proof data aux, the bad-challenge-
computation algorithm outputs some randomness r (for the zkPCP.Query algorithm).

42

Moreover, these two algorithms satisfy the following two properties:

– CRS indistinguishability: The common reference string output by zkPCP.Setup and
zkPCP.TrapGen algorithms are computationally indistinguishable:

{crs← zkPCP.Setup(1λ) : crs}
c
≈ {(crs, td)← zkPCP.TrapGen(1λ) : crs}.

– Correctness: For every instance x /∈ L and every setting of the auxiliary data aux,

Pr[zkPCP.BadRandomness(crs, td, x, aux) = f(crs, x, aux)] = 1,

where (crs, td)← zkPCP.TrapGen(1λ).

Remark A.2 (Instantiating Trapdoor Zero-Knowledge PCPs). We can construct trapdoor zero-
knowledge PCPs from any “instance-independent” trapdoor Σ-protocol as defined by [CLW18]. For
example, as suggested in [CLW18], we can use Blum’s protocol for graph Hamiltonicity [Blu86].
This yields a trapdoor zero-knowledge PCP for NP in the common random string model.

Adaptive soundness via trapdoor zero-knowledge PCPs. If we instantiate Construction 4.1
using a trapdoor zero-knowledge PCP, it is straightforward to show that the resulting DV-NIZK is
adaptively sound. Note that we first need to modify the construction so that dvNIZK.Setup also
includes the CRS for the trapdoor zero-knowledge PCP, and dvNIZK.Prove includes the auxiliary
data aux output by the zero-knowledge PCP prover (in the clear). With these modifications, adaptive
soundness roughly follows from the fact that for any false statement x /∈ L, there is only one setting
of the PCP verifier’s randomness r that causes the verifier to accept. Since the randomness is derived
from a pseudorandom function (and assumed to be drawn from a super-polynomial space), this
event happens with negligible probability. We give the formal statement in the following theorem:

Theorem A.3 (Adaptive Soundness). If PRF is a secure PRF, ABSFE satisfies strong key-hiding,
and zkPCP is a trapdoor zero-knowledge PCP (where the randomness complexity ρ of zkPCP.Query
satisfies ρ = ω(log λ)), then dvNIZK from Construction 4.1 (where we modify dvNIZK.Setup to
include the common reference string output by zkPCP.Setup and dvNIZK.Prove includes the auxiliary
information output by zkPCP.Prove as part of the proof) satisfies adaptive computational soundness.

Proof. Before proving the theorem, we first show that without loss of generality, an adversary
breaking the soundness of a DV-NIZK can be assumed not to make verification queries on its
eventual challenge statement; this is true even for adaptive soundness.

Lemma A.4 (No Verification Queries on the Challenge Statement). A DV-NIZK argument system
is adaptively (resp., non-adaptively) sound if and only if it is adaptively (resp., non-adaptively)
sound against adversaries that are further required not to make verification queries on their eventual
challenge statements.

Proof. Suppose that some PPT adversary A breaks (either adaptive or non-adaptive) soundness of
some scheme dvNIZK (for a language L) with non-negligible probability. We define a new adversary
A′ as follows:

• At the beginning of the security game, A′ chooses a uniformly random pair of indices
i∗, j∗

r← [Q] (where Q is a bound on the number of verification queries A makes).

43

• Algorithm A′ starts running algorithm A. For an index i ∈ [Q], let (xi, πi) denote the ith

verification query A makes.

• Whenever A makes a verification query on statement (xi, πi) where i ≥ i∗ and xi = xi∗ ,
algorithm A′ replies to A with ⊥. Otherwise, A′ forwards (xi, πi) to its verification oracle and
replies to A with the oracle’s response.

• At the end of the experiment, A′ outputs (xj∗ , πj∗). If A makes fewer than j∗ queries, then
A′ outputs whatever A outputs.

By construction, with non-negligible probability, A′ will guess a pair (i∗, j∗) such that with non-
negligible probability over the randomness of an honest execution of A, the following hold:

• A is successful on some instance x 6∈ L,

• i∗ is the first oracle query involving the statement x, and

• j∗ is the first oracle query involving the statement x on which the verifier accepts.

Thus, we see that A′ breaks the soundness of dvNIZK with non-negligible probability without ever
making a verification query on its challenge instance.

The proof of Theorem A.3 now follows by a similar sequence of hybrid experiments as the proof of
non-adaptive soundness (Theorem 4.3):

• Hyb0: This is the real adaptive soundness experiment. At the beginning of the game, the

challenger samples k
r← K, zkPCP.crs ← zkPCP.Setup(1λ), ABSFE.crs ← ABSFE.Setup(1λ),

and (pk′, sk′) ← ABSFE.KeyGen(ABSFE.crs, k). It gives crs = (zkPCP.crs,ABSFE.crs) and
pk = pk′ to A and sets sk = (k, sk′). When the adversary makes a verification query (x, π), the
challenger replies with dvNIZK.Verify(crs, sk, x, π). At the end of the experiment, the adversary
outputs a statement x∗ and a proof π∗. The output of the experiment is 1 if x∗ /∈ L and
dvNIZK.Verify(crs, sk, x∗, π∗) = 1 and the adversary does not make any oracle queries on x∗.
Otherwise, the output is 0.

The further condition that the adversary does not make oracle queries on x∗ is without loss of
generality by Lemma A.4.

• Hyb1: Same as Hyb0, except at the end of the experiment, after the adversary outputs
its statement x∗ and proof π∗ = (aux∗, ct∗1, . . . , ct

∗
m), the output of the experiment is 1 if

f(crs, x∗, aux∗) = PRF(k, x∗) (and the adversary makes no oracle queries on x∗).

We claim that for all adversaries A, Pr[Hyb0(A) = 1] ≤ Pr[Hyb1(A) = 1]. By construction,
Hyb0 and Hyb1 only differ in how the output is computed. Suppose Hyb0(A) = 1. We show
that Hyb1(A) also outputs 1 in this case. If Hyb0(A) = 1, then it must be the case that
x∗ /∈ L and dvNIZK.Verify(crs, sk, x∗, π∗) = 1. By construction, the verification algorithm first
computes (stx∗ , q1, . . . , q`) ← zkPCP.Query(x∗;PRF(k, x∗)), decrypts ct∗q1 , . . . , ct

∗
q`

to obtain
values s1, . . . , s` ∈ Σ, and finally outputs zkPCP.Verify(zkPCP.crs, stx∗ , aux

∗, s1, . . . , s`). Since
x∗ /∈ L, by soundness of zkPCP, there is only one setting of the randomness to zkPCP.Query
that can cause zkPCP.Verify to accept: namely, if PRF(k, x∗) = f(crs, x∗, aux∗). In this case,
the output in Hyb1 is also 1, and the claim follows.

44

In the following, we show that Pr[Hyb1(A) = 1] = negl(λ), which upper bounds the probability
that the adversary breaks soundness.

• Hyb2: Same as Hyb1, except the challenger computes (zkPCP.crs, td) ← zkPCP.TrapGen
when constructing crs and it uses zkPCP.BadRandomness(zkPCP.crs, td, x∗, aux∗) to compute
f(crs, x∗, aux∗) when computing the output of the experiment. In particular, the output of
this experiment can be efficiently computed.

This is computationally indistinguishable from Hyb1 by the trapdoor-generation properties of
zkPCP.

• Hyb3: Same as Hyb2, except the challenger uses the simulator S = (S1,S2) for the strong
key-hiding game for ABSFE to construct ABSFE.crs, the public key pk, and to implement the
decryption algorithm when responding to the verification queries. In particular, this is the
analog of Hyb1 in the proof of Theorem 4.3.

As in the proof of Theorem 4.3, this is indistinguishable from Hyb2 from by strong key-hiding
security of ABSFE.

• Hyb4: Same as Hyb3, except the challenger samples a random function g
r← Funs[{0, 1}n, {0, 1}ρ]

at the beginning of the experiment. Whenever it needs to compute PRF(k, x), it instead
computes g(x). This is the analog of Hyb2 in the proof of Theorem 4.3.

As in the proof of Theorem 4.3, this is indistinguishable from Hyb3 by security of PRF.

In hybrid Hyb4, the output is 1 only if g(x∗) = zkPCP.BadRandomness(zkPCP.crs, td, x∗, aux∗).
Since the function g is uniformly random (and in particular, independent of zkPCP.BadRandomness)
and the adversary makes no oracle calls on x∗ (thus revealing no information about g(x∗) in the
experiment), this relation holds with probability 1/2ρ = negl(λ). Thus, with all but negligible
probability, the output of Hyb4(A) will be 0, and the claim follows.

B Receiver-Extractable OT from DDH or LWE

In this section, we prove the LWE instantiation in Theorem 2.19 using the OT construction based on
dual-mode encryption from [PVW08]. In a dual-mode encryption scheme, there is a setup algorithm
that outputs a CRS in one of two computationally indistinguishable modes: a “messy” mode and a
“decryption” mode. When using a dual-mode encryption scheme to construct an OT protocol, the
properties of the messy mode are used to obtain extractability against malicious receivers, while
the decryption mode is used to obtain extractability against malicious senders. In [PVW08], the
LWE-based instantiation of dual-mode encryption satisfies a weaker property in the decryption mode
that only ensures security in a setting where the CRS is used for an a priori bounded number of
OTs. Here, we show that if we only require extractability against malicious receivers, the properties
of the decryption mode still suffice to prove the weaker requirement that the receiver’s choice bit is
computationally hidden from the sender.

This is done in two steps. First, we recall that we can build a messy encryption scheme satisfying
some key-hiding property, which is a relaxation of the dual-mode encryption of [PVW08], starting
from either LWE or DDH. Then we show that such a scheme yields a receiver-extractable OT.

45

We start by defining key-hiding messy encryption schemes, which are a relaxation of the dual
mode encryption of [PVW08], where the only mode used is the messy mode, and where the properties
of the decryption mode are relaxed.

Definition B.1 (Key-Hiding Messy Encryption). A key-hiding messy encryption scheme with
message space {0, 1}k is a tuple of PPT algorithms (SetupMessy,KeyGen,Encrypt,Decrypt,FindMessy)
with the following syntax:

• SetupMessy(1λ)→ (crs, td): Given the security parameter λ, the setup algorithm outputs a
common reference string crs along with a trapdoor td.

• KeyGen(crs, b) → (pk, sk): Given a reference string crs and a branch b ∈ {0, 1}, the key-
generation algorithm outputs a public key pk and a secret key sk.

• Encrypt(crs, pk, b,m)→ ct: Given a reference string crs, a public key pk, a branch b ∈ {0, 1}
and a message m ∈ {0, 1}k, the encryption algorithm outputs a ciphertext ct.

• Decrypt(crs, sk, ct)→ m: Given a reference string crs, a secret key sk and a ciphertext ct, the
decryption algorithm outputs a message m.

• FindMessy(td, pk) → b: Given a trapdoor td and a (possibly malformed) public key pk, the
find-messy algorithm outputs a branch b ∈ {0, 1}.

We require the following properties to hold:

• Completeness for decryptable branch: For all m ∈ {0, 1}k and b ∈ {0, 1}:

Pr[Decrypt(crs, sk,Encrypt(crs, pk, b,m)) = m] = 1,

where (crs, td)← SetupMessy(1λ) and (pk, sk)← KeyGen(crs, b).

• Trapdoor identification of a messy branch: With overwhelming probability over (crs, td)←
SetupMessy(1λ), it holds for all (possibly malformed) pk and all messages m0,m1 ∈ {0, 1}k,

Encrypt(crs, pk, b,m0)
s
≈ Encrypt(crs, pk, b,m1),

where b← FindMessy(td, pk).

• Key-hiding: The following distributions are computationally indistinguishable:

(crs, pk0)
c
≈ (crs, pk1),

where (crs, td)← SetupMessy(1λ), (pk0, sk0)← KeyGen(crs, 0), and (pk1, sk1)← KeyGen(crs, 1).

We now show that the dual-mode encryption schemes of [PVW08] induce key-hiding messy encryption
schemes with a uniformly random CRS.

Theorem B.2 (Key-Hiding Messy Encryption from DDH and LWE [PVW08]). Assuming DDH or
LWE (with polynomial modulus-to-noise ratio), there exists a key-hiding messy encryption scheme.
Furthermore, the CRS output by SetupMessy is a uniformly random string.

46

Proof. The constructions are the messy modes of the dual-mode encryption schemes from [PVW08]
(specifically, the DDH-based construction from [PVW08, §5.3] and the LWE-based construction
from [PVW08, §7.3]). Both of these constructions satisfy completeness and trapdoor identification,
which are required of any dual-mode encryption scheme. To show key-hiding, we use the following
property that the same constructions satisfy (which is also proven in [PVW08]):

• There exists an algorithm (crs′, pk′, sk′0, sk
′
1)← SetupDec(1λ) such that for all b ∈ {0, 1},

(crs, pk, skb)
c
≈ (crs′, pk′, sk′b),

where (crs, td)← SetupMessy(1λ), (pk, skb)← KeyGen(crs, b), and (crs′, pk′, sk′0, sk
′
1)← SetupDec(1λ).

Key-hiding follows from this property by a simple hybrid argument. Finally, we note that the
output of the setup for the extraction mode of the DDH dual-mode scheme in [PVW08] is uniformly
random; and the one from LWE is statistically close to uniform. We note that in the latter case,
replacing it with a completely uniform string preserves perfect security.

OT from messy encryption. Next, we show that the OT induced by the messy encryption
scheme (similarly to [PVW08]) is receiver-extractable (as defined in Section 2.4).

Construction B.3 (Receiver-Extractable 2-Message OT). Let λ be a security parameter, and
(SetupMessy,KeyGen,Encrypt,Decrypt,FindMessy) be a key-hiding messy encryption scheme. Define
the following OT scheme OT = (OT.Setup,OT1,OT2,OT.Receive):

• OT.Setup(1λ): Compute (crs, td)← SetupMessy(1λ) and output crs.

• OT1(crs, b; r): Output M (1) = pk where (pk, sk)← KeyGen(crs, b; r).

• OT2(crs,M
(1),m0,m1): Output M (2) = (ct0, ct1) where ct0 ← Encrypt(crs,M (1), 0,m0) and

ct1 ← Encrypt(crs,M (1), 1,m1).

• OT.Receive(crs,M (2), b, r): Parse M (2) as (ct0, ct1). Compute (pk, sk)← KeyGen(crs, b; r) and
output m← Decrypt(crs, sk, ctb).

Claim B.4. Assuming (SetupMessyKeyGen,Encrypt,Decrypt,FindMessy) is a key-hiding messy en-
cryption scheme, then Construction B.3 achieves correctness (Definition 2.15), receiver security
(Definition 2.16) and extractability against malicious receivers (Definition 2.17).

Proof. Correctness follows from completeness for the decryptable branch, and receiver security follows
from key-hiding. For extractability against malicious receivers, we use the trapdoor identification of
a messy branch property and define OT.SetupExt and OT.Ext as follows:

• OT.SetupExt(1λ): Output (crs, td)← SetupMessy(1λ).

• OT.Ext(td,M (1)): Compute b← FindMessy(td,M (1)) and output 1− b.

In particular, with overwhelming probability over (crs, td)← SetupMessy(1λ), then for all M (1), if
β ← FindMessy(crs,M (1)), then for all m0,m1, OT2(crs,M

(1),m0,m1) statistically hides mβ.

Combining the above with Theorem B.2, we obtain the following corollary:

Corollary B.5. Assuming DDH (resp., LWE with polynomial modulus and polynomial modulus-to-
noise ratio), there exists a receiver-extractable 2-message OT scheme in the common random string
model.

47

C Lattice-Based ABE with Weak Function-Privacy

In this section, we recall the lattice-based ABE construction from [BGG+14] and show that a simple
variant of it satisfies our notion of weak function-hiding (Definition 2.13). By Remark 5.4, this
implies an AB-SFE scheme that satisfies weak message-hiding and strong key-hiding. This gives a
construction of DV-NIZKs from the LWE assumption (via Construction 4.1). However, the scheme
does not provide strong message-hiding, and thus, does not directly imply a MDV-NIZK via our
constructions.

C.1 Lattice Preliminaries

We begin by providing some basic background on lattice-based cryptography.

Notation. Throughout this section, we use bold uppercase letters (e.g., A,B) to denote matrices
and bold lowercase letters (e.g., u, v) to denote vectors. We will use the infinity norm for vectors
and matrices. Specifically, for a vector u, we write ‖u‖ to denote the maximum absolute value of
an element in u and ‖A‖ to denote the maximum absolute value of an element in A. For x ∈ Zq,
we write bxe2 to denote the modular rounding function [BPR12] that outputs b2/q · xe ∈ Z2.

Learning with errors. The learning with errors (LWE) assumption was introduced by Regev [Reg05].
In the same work, Regev showed that solving LWE in the average case is as hard as (quantumly)
approximating several standard lattice problems in the worst case. We state the assumption below.

Definition C.1 (Learning with Errors [Reg05]). Fix a security parameter λ and integers n = n(λ),
m = m(λ), q = q(λ), and an error (or noise) distribution χ = χ(λ) over the integers. Then, the

(decisional) learning with errors (LWE) assumption LWEn,m,q,χ states that for A
r← Zn×mq , s

r← Znq ,

e← χm, and u
r← Zmq , the following two distributions are computationally indistinguishable:

(A, sTA + eT) and (A,uT)

When the error distribution χ is B-bounded (oftentimes, a discrete Gaussian distribution), and under
mild conditions on the modulus q, the LWEn,m,q,χ assumption is true assuming various worst-case
lattice problems such as GapSVP and SIVP on an n-dimensional lattice are hard to approximate
within a factor of Õ(n · q/B) by a quantum algorithm [Reg05]. Similar reductions of LWE to the
classical hardness of approximating worst-case lattice problems are also known [Pei09, ACPS09,
MM11, MP12, BLP+13].

The gadget matrix. We use the gadget matrix [MP12] G = g ⊗ In ∈ Zn×ndlog qeq , where
g = (1, 2, 4, . . . , 2dlog qe−1) is the powers-of-two vector. We define the bit-decomposition func-

tion G−1 : Zn×mq → Zndlog qe×mq which expands each entry x ∈ Zq in the input matrix into a column
of dimension dlog qe consisting of the bits of the binary representation of x. To simplify notation,
we always assume that G has width m = Θ(n log q). Note that this is without loss of generality
since we can always extend G by appending zero columns. For any matrix A ∈ Zn×mq , we have that
G ·G−1(A) = A.

Lattice trapdoors and lattice sampling. Although LWE is believed to be hard, with some
auxiliary trapdoor information, the problem becomes easy. Lattice trapdoors have been used in a
wide variety of context and are studied extensively in the literature [Ajt99, GPV08, AP09, CHKP10,
ABB10, MP12, BGG+14, LW15]. For convenience, we will use the notion of gadget trapdoors
from [MP12].

48

Theorem C.2 (Gadget Trapdoors and Lattice Sampling [ABB10, MP12]). Fix a security parameter
λ, lattice parameters n, m, q, β, where m = O(n log q). Then, there exists a tuple of efficient
algorithms (TrapGen, Invert, SampleLeft,SampleRight):

• TrapGen(1λ)→ (A,R): On input the security parameter λ, the trapdoor generation algorithm
outputs a matrix A ∈ Zn×mq and a gadget trapdoor R ∈ Zm×mq .

• Invert(A,R,v)→ s/⊥: On input a matrix A ∈ Zn×mq , a matrix R ∈ Zm×mq (a gadget trapdoor
for A), and a vector a ∈ Zmq , the inversion algorithm outputs a vector s ∈ Znq or ⊥.

• SampleLeft(A,B,R,V, β) → U: On input matrices A,B ∈ Zn×mq , a matrix R ∈ Zm×mq (a
gadget trapdoor of A), a target matrix V ∈ Zn×mq , and a norm bound β, SampleLeft returns a
matrix U ∈ Z2m×m

q .

• SampleRight(A,B,T,V, β) → U: On input matrices A,B ∈ Zn×mq , a matrix T ∈ Zm×mq , a
target matrix V ∈ Zn×mq , and a norm bound β, SampleRight returns a matrix U ∈ Z2m×m

q .

Moreover, the above algorithms satisfy the following properties:

• If we sample (A,R)← TrapGen(1λ), then A
s
≈ Uniform(Zn×mq), R is full-rank, AR = G, and

‖R‖ ≤ β.

• If a = sTA + eT for some s, e ∈ Znq where ‖e‖ ≤ q/(4m ‖R‖) and AR = G, then

Pr
[
Invert(A,R,a) = s

]
= 1.

• The SampleLeft and SampleRight algorithms satisfy the following properties. For any rank-n
matrices A,B ∈ Zn×mq and any target matrix V ∈ Zn×mq , the following properties hold:

– Let R ∈ Zm×mq be any matrix satisfying AR = G and ‖R‖·ω(m
√

logm) ≤ β2 ≤ q. Then,
for U0 ← SampleLeft(A,B,R,V, β2), we have that [A | B] ·U0 = V and ‖U0‖ ≤ β2.

– Let T ∈ Zm×mq be any matrix satisfying AT + yG = B for some 0 6= y ∈ Zq and
‖T‖ ·ω(m

√
logm) ≤ β2 ≤ q. Then, for U1 ← SampleRight(A,B,T,V, β2), we have that

[A | B] ·U1 = V and ‖U1‖ ≤ β2.

– The distributions of U0,U1 as defined above are statistically indistinguishable.

Randomness extraction. We also rely on a generalization of the leftover hash lemma [HILL99]
due to Dodis et. al [DRS04]. Specifically, we use the following special case from [ABB10]:

Theorem C.3 (Leftover Hash Lemma [HILL99, DRS04, ABB10]). Suppose that m > (n+ 1) log q+

ω(log n) and that q > 2 is prime. Take R
r← {±1}m×k where k = k(n) is polynomial in n. Sample

A
r← Zn×mq and B

r← Zn×kq . Then, for all vectors e ∈ Zmq , the following two distributions are

statistically indistinguishable: (A,AR,RTe) and (A,B,RTe).

Matrix embeddings. We review the matrix encoding scheme from Boneh et al. [BGG+14] that
is the basis of their ABE scheme. At a high-level, a matrix encoding scheme allows one to embed a
sequence of input bits x1, . . . , xρ ∈ {0, 1} into matrices A1, . . . ,Aρ ∈ Zn×mq . Moreover, it is possible
to homomorphically evaluate any circuit (of a priori bounded depth) over the encoded input bits.
The specific implementation of the homomorphic operations are non-essential to this work, so we
just give the basic schematic that we need in the theorem below:

49

Theorem C.4 (Matrix Embeddings [BGG+14]). Fix a security parameter λ, and lattice parameters
n,m, q. Then, there exist a pair of efficiently-computable algorithms (Evalpk,Evalct) with the following
syntax:

• Evalpk(C,A1, . . . ,A`) → AC : On input a circuit C : {0, 1}` → {0, 1}, and a set of matrices
A1, . . . ,A` ∈ Zn×mq , the Evalpk algorithm outputs a matrix AC ∈ Zn×mq .

• Evalct(C, x,A1, . . . ,A`,a1, . . . ,a`) → aC,x: On input a circuit C : {0, 1}` → {0, 1}, an input
x ∈ {0, 1}`, a set of matrices A1, . . . ,A` ∈ Zn×mq , and a set of vectors a1, . . . ,a` ∈ Zmq , the
Evalct algorithm outputs a vector aC,x ∈ Zmq .

Moreover, the algorithms (Evalpk,Evalct) satisfy the following properties. There exists a fixed
function B(β,m, d) = β · mO(d) such that for all A1, . . . ,A` ∈ Zn×mq , x ∈ {0, 1}`, and Boolean

circuits C : {0, 1}` → {0, 1} of depth d, let AC := Evalpk(C,A1, . . . ,A`). Then, the following hold:

• Let a1, . . . ,a` ∈ Zmq be vectors of the form

ai = sT(Ai + xi ·G) + eTi ∀i ∈ [`],

for some vector s ∈ Znq and where ‖ei‖ ≤ β for all i ∈ [`]. Then, if we compute the vector
aC,x ← Evalct(C, x,A1, . . . ,A`,a1, . . . ,a`), we have

aC,x = sT(AC + C(x) ·G) + eTC,x,

for an error vector ‖eC,x‖ ≤ B(β,m, d) = β ·mO(d).

• If there exist matrices Ri ∈ Zn×mq where Ai = ARi − xiG and ‖Ri‖ ≤ β for all i ∈ [`], then

AC = ARC − C(x) ·G,

where RC can be efficiently computed from (C, x,A,R1, . . . ,R`) and ‖RC‖ ≤ B(β,m, d) =
β ·mO(d).

C.2 Weak Function-Hiding ABE from Lattices

In this section, we describe a simple variant of the ABE scheme from Boneh et al. [BGG+14] where
the decryption operation additionally recovers the encryption randomness and checks well-formedness
of the ciphertext. This is conceptually very similar to our construction of strong key-hiding AB-SFE
schemes from KDM-secure secret-key encryption. We recall the construction here:

Construction C.5 (Weak Function-Hiding ABE [BGG+14, adapted]). Let λ be a security param-
eter and let (n,m, q, χ) be lattice parameters, where χ is a β-bounded distribution. Let β1, β2 < q
be additional noise parameters. Let X = {0, 1}` be the attribute space and M = {0, 1} be the
message space. Let C be a class of Boolean circuits of depth at most d from X → {0, 1}. In
the following, we will use the convention that a secret key skC for a circuit C should successfully
decrypt a ciphertext ct with attribute x if C(x) = 0. Then, the ABE scheme ΠABE = (ABE.Setup,
ABE.KeyGen,ABE.Encrypt,ABE.Decrypt) with attribute space X , message space M, and function
class C is defined as follows:

50

• ABE.Setup(1λ): On input the security parameter λ, the setup algorithm samples (A,R)←
TrapGen(1λ), A1, . . . ,A`

r← Zn×mq and u ← Znq . It outputs the public parameters pp =
(A,A1, . . . ,A`,u) and the master secret key msk = R.

• ABE.KeyGen(pp,msk, C): On input the public parameters pp = (A,A1, . . . ,A`,u), the master
secret key msk = R and a circuit C : {0, 1}` → {0, 1}, the key-generation algorithm computes
AC ← Evalpk(C,A1, . . . ,A`) and samples RC ← SampleLeft(A,AC ,R,G, β2). It outputs the
secret key sk = (C,RC).

• ABE.Encrypt(pp, x,m): On input the public parameters pp = (A,A1, . . . ,A`,u), an attribute

x ∈ {0, 1}`, and a message m ∈ {0, 1}, the encryption algorithm samples s
r← Znq , e ← χm,

eu ← χ, and R1, . . . ,R`
r← {±1}m×m. It computes a ← sTA + eT, ai ← sT(Ai + xi ·

G) + eTRi for each i ∈ [`], and au ← sTu + m · bq/2e + eu, and outputs the ciphertext
ct = (x,a,a1, . . . ,a`, au).

• ABE.Decrypt(pp, sk, ct): On input the public parameters pp = (A,A1, . . . ,A`,u), a secret key
sk, and a ciphertext ct = (x,a,a1, . . . ,a`, au), the decryption algorithm first uses the trapdoor
(in the secret key sk) to try and recover part of the encryption randomness s ∈ Znq :

– If sk = R ∈ Zm×mq (i.e., sk has the structure of the master secret key), then the decryption
algorithm computes s← Invert(A,R,a).

– If sk = (C,RC) for some C ∈ C and RC ∈ Zm×mq , (i.e., sk has the structure of a
function key), then the decryption algorithm first checks that C(x) = 0. If not, then
the algorithm outputs ⊥. Otherwise, it computes AC ← Evalpk(C,A1, . . . ,A`), aC,x ←
Evalct(C, x,A1, . . . ,A`,a1, . . . ,a`) and finally s← Invert([A | AC],RC , [a | aC,x]).

– If sk does not have one of these two forms, the algorithm outputs ⊥.

If the candidate key s = ⊥, then the algorithm outputs ⊥. Otherwise, it sets m←
⌊
au − sTu

⌉
2
.

Next, the decryption algorithm applies the following verification procedure:

1. Compute eT ← a− sTA, eTi ← ai − sT(Ai + xiG), and eu ← au − sTu−m · bq/2e.
2. Check that ‖e‖ ≤ β1, ‖ei‖ ≤ β1 for all i ∈ [`], and |eu| ≤ β1. If any check fails, output ⊥.

3. If all checks pass, output the pair (x,m).

Correctness and security analysis. Correctness and security of this scheme follow by essentially
the same arguments from [BGG+14, §4]. To show that the scheme satisfies weak function-privacy,
we first show that it in fact satisfies a stronger notion of consistency: namely, that all honestly-
generated decryption keys behave identically to the master secret key when decrypting valid
ciphertexts (satisfying the predicate). As we show below, any consistent ABE scheme immediately
satisfies our notion of weak function hiding.

Definition C.6 (Consistency). Let ABE be an ABE scheme, and let t = t(λ) be a bound on the
length of ciphertexts in ABE. We say that ABE is consistent if for (pp,msk)← ABE.Setup(1λ), and
all strings ct ∈ {0, 1}t, the following properties hold:

• For all f ∈ F , if skf ← ABE.KeyGen(pp,msk, f) and ABE.Decrypt(pp, skf , ct) = (x,m), then
f(x) = 1.

51

• If ABE.Decrypt(pp, sk, ct) = (x,m) where sk = msk or sk is output by ABE.KeyGen(pp,msk, f)
for some function f ∈ F , then Pr[ABE.Decrypt(pp,msk, ct) = (x,m)] = 1 and for all g ∈ F
where g(x) = 1,

Pr[skg ← ABE.KeyGen(pp,msk, g) : ABE.Decrypt(pp, skg, ct) = (x,m)] = 1.

Lemma C.7 (Consistency Implies Weak Function Hiding). Let ABE be a consistent ABE scheme.
Then, ABE satisfies weak function hiding.

Proof. We begin by constructing a weak function hiding simulator Sf(·)(pp,msk, ct) as follows:

1. On input the public parameters pp, the master secret key msk, and a ciphertext ct, the
simulator computes (x,m) ← ABE.Decrypt(pp,msk, ct). If ABE.Decrypt(pp,msk, ct) outputs
⊥, then the simulator also outputs ⊥.

2. Otherwise, the simulator makes a single oracle query to f on input x. If f(x) = 1, then the
simulator outputs (x,m), and otherwise, it outputs ⊥.

To complete the proof, we show that the simulator perfectly simulates the real distribution. Let
t = t(λ) be the length of a ciphertext in ABE. Then, take any function f ∈ F , any string ct ∈ {0, 1}t,
(pp,msk)← ABE.Setup(1λ), and skf ← ABE.KeyGen(pp,msk, f). We consider two possibilities:

• Suppose ABE.Decrypt(pp, skf , ct) = (x,m) for some x ∈ X and m ∈ M. By consistency of
ABE, this means that f(x) = 1 and ABE.Decrypt(pp,msk, ct) = (x,m). By construction, the
simulator outputs (x,m) in this case.

• Suppose ABE.Decrypt(pp, skf , ct) = ⊥. If ABE.Decrypt(pp,msk, ct) = ⊥, then the simulator
also outputs ⊥. Suppose instead that ABE.Decrypt(pp,msk, ct) = (x,m) for some x ∈ X
and m ∈ M. We consider two possibilities. If f(x) = 1, then by consistency of ABE,
ABE.Decrypt(pp, skf , ct) = (x,m), which is a contradiction. Alternatively if f(x) = 0, then
the simulator output ⊥, which matches the behavior of the real decryption algorithm.

Since the output of the simulator on every ciphertext ct ∈ {0, 1}t is distributed identically as the
output of the real decryption algorithm, weak function hiding holds.

Theorem C.8 (Consistency). Let ABE be the ABE scheme from Construction C.5. If 4mββ1 < q
and 4mβ2 · B(β1,m, d) < q where B(β1,m, d) = β1 ·mO(d) is the bound from Theorem C.4, then
ABE is consistent (and thus, is also weak function hiding).

Proof. We begin by showing the following lemma on the statistical properties of ABE:

Lemma C.9. Take (pp,msk)← ABE.Setup(1λ) where pp = (A,A1, . . . ,A`,u) and msk = R. Take
any a,a1, . . . ,a` ∈ Zmq and au ∈ Zq such that there exist s ∈ Znq , x ∈ {0, 1}`, e, e1, . . . , e` ∈ Zmq , and
eu ∈ Zq with the following properties:

• ‖e‖ , ‖e1‖ , . . . , ‖e`‖ , |eu| ≤ β1.

• a = sTA + eT, ai = sT(Ai + xiG) + eTi for all i ∈ [`], and au = sTu + eu +m · bq/2e for some
m ∈ {0, 1}.

52

Let ct = (x,a,a1, . . . ,a`, au). If 4mββ1 < q and 4mβ2·B(β1,m, d) < q where B(β1,m, d) = β1·mO(d)

is the bound from Theorem C.4, then the following hold:

• Pr
[
ABE.Decrypt(pp,msk, ct) = (x,m)

]
= 1.

• For any C ∈ C where C(x) = 0,

Pr
[
ABE.Decrypt

(
pp,ABE.KeyGen(pp,msk, C), ct

)
= (x,m)

]
= 1.

Proof. We first analyze the randomness recovery step in the ABE.Decrypt function:

• Since (A,R) is sampled using TrapGen, by Theorem C.2, we have that ‖R‖ ≤ β. Next, by
assumption, ‖e‖ ≤ β1 < q/(4mβ), so we can again appeal to Theorem C.2 and conclude that
Invert(A,R,a) = s.

• Take C ∈ C where C(x) = 0 and let skC = (C,RC) ← KeyGen(pp,msk, C), AC ←
Evalpk(C,A1, . . . ,A`), aC,x ← Evalct(C, x,A1, . . . ,A`,a1, . . . ,a`). By definition of KeyGen,
we have that RC ← SampleLeft(A,AC ,R,G, β2). By Theorem C.2 [A | AC]RC = G and
moreover, ‖RC‖ ≤ β2. In addition, by Theorem C.4 and the fact that C(x) = 0, we
have that aC,x = sTAC + eTC,x, where ‖eC,x‖ ≤ B(β1,m, d). This means that [a | aC,x] =

sT[A | AC] + [eT | eTC,x]T. Since 4mβ2 ·B(β1,m, d) < q,

‖eC,x‖ ≤ B(β1,m, d) ≤ q/(4mβ2) ≤ q/(4m ‖RC‖).

We now appeal to Theorem C.2 and conclude that Invert([A | AC],RC , [a | aC,x]) = s.

Next, au − sTu = m · bq/2e + eu and since |eu| ≤ β1 < q/4, it follows that
⌊
au − sTu

⌉
2

=
m. Finally, by assumption, all of the error terms are bounded by β1 by assumption. Thus,
ABE.Decrypt(pp,msk, ct) = (x,m) and ABE.Decrypt(pp, skC , ct) = (x,m).

To see that ABE is consistent, take (pp,msk) ← ABE.Setup(1λ), and consider any ciphertext
ct = (x,a,a1, . . . ,a`, au) where x ∈ {0, 1}`, a,a1, . . . ,a` ∈ Zmq , and au ∈ Zq. Suppose that
ABE.Decrypt(pp, sk, ct) = (x,m) for some string sk (could be the master secret key msk, an key
output by ABE.KeyGen, or even an arbitrary string). By construction of the decryption function,
this is only possible if there exists s ∈ Znq e, e1, . . . e` ∈ Zmq and eu ∈ Zq such that a = sTA + eT,

ai = sT(Ai +xiG) + eTi for all i ∈ [`], and au = sTu +m · bq/2e+ eu, and where ‖e‖ , ‖ei‖ , |eu| ≤ β1
for all i ∈ [`]. Consistency now follows by Lemma C.9.

D Strong Key-Hiding AB-SFE from PKE and DV-NIZK

In this section, we prove a converse to Construction 4.1, showing that (assuming the existence of
public-key encryption) AB-SFE is actually necessary to construct reusable DV-NIZK arguments.
This establishes an equivalence between (strong key-hiding) AB-SFE and (adaptively-sound) reusable
DV-NIZK + PKE.

Theorem D.1 (AB-SFE from PKE and DV-NIZK). Suppose that public-key encryption exists,
and that adaptively-sound reusable DV-NIZKs exist. Then, there exists an AB-SFE scheme that is
strong key-hiding and weak message-hiding.

53

Proof. To prove the theorem, we make use of Remark 5.4; namely, it suffices to construct a single-
key ABE scheme satisfying weak function-hiding (Definition 2.13). Constructing such a scheme
is intuitively simple: augment any single-key ABE scheme (which follows from any public-key
encryption scheme [SS10, GVW12]) with a “DV-NIZK argument of well-formedness.” This is
conceptually very similar to the Naor-Yung construction of CCA-secure encryption from CPA-secure
encryption [NY90], except our objective is showing function-hiding rather than CCA-security. More
formally, we construct such a weak function-hiding ABE scheme as follows:

Construction D.2 (Weak Function-Hiding ABE). Let ABE = (ABE.Setup,ABE.KeyGen,ABE.Encrypt,
ABE.Decrypt) denote a single-key ABE scheme, and let dvNIZK = (dvNIZK.Setup, dvNIZK.KeyGen,
dvNIZK.Prove, dvNIZK.Verify) denote an adaptively-sound reusable DV-NIZK argument system. We
construct a single-key ABE scheme Aug as follows:

• Aug.Setup(1λ): Sample (ABE.pp,ABE.msk) ← ABE.Setup(1λ), crs ← dvNIZK.Setup(1λ), and
(pk, sk)← dvNIZK.KeyGen(crs). Output the public parameters pp = (ABE.pp, crs, pk) and the
master secret key msk = (ABE.msk, sk).

• Aug.KeyGen(msk, f): Parse msk = (ABE.msk, sk), compute ABE.skf ← ABE.KeyGen(ABE.msk, f),
and output skf = (ABE.skf , sk).

• Aug.Encrypt(pp, x,m): On input the public parameters pp = (ABE.pp, crs, pk), an attribute x,
and a message m, proceed as follows:

– Compute ABE.ct← ABE.Encrypt(ABE.pp, x,m; ρ) for ρ sampled uniformly at random.

– Compute π ← dvNIZK.Prove(crs, pk,x, (m, ρ)), where x = (ABE.pp,ABE.ct, x) is the
statement

∃ (m′, ρ′) : ABE.ct = ABE.Encrypt(ABE.pp, x,m′; ρ′), (D.1)

and (m, ρ) is the witness for this statement.

– Output the ciphertext ct = (x,ABE.ct, π).

• Aug.Decrypt(pp, skf , ct): On input the public parameters pp = (ABE.pp, crs, pk), the decryption
key skf = (ABE.skf , sk), and the ciphertext ct = (x,ABE.ct, π), proceed as follows:

– Call dvNIZK.Verify(crs, sk,x, π) where x = (ABE.pp,ABE.ct, x) is the statement from
Eq. (D.1). Output ⊥ if this verification fails.

– Output ABE.Decrypt(ABE.pp,ABE.skf ,ABE.ct).

Correctness of this ABE scheme follows by completeness of the underlying DV-NIZK and correctness
of the underlying single-key ABE. We now show that this scheme is semantically secure and satisfies
weak function-hiding.

Lemma D.3. If ABE semantically secure and dvNIZK is zero-knowledge, then the scheme Aug is
semantically secure.

Proof. We want to prove that for every function f and attribute x such that f(x) = 0, we have that

(pp, skf ,Aug.Encrypt(pp, x, 0))
c
≈ (pp, skf ,Aug.Encrypt(pp, x, 1)),

54

where (pp, skf) are generated according to the honest setup and key-generation algorithms. In our
analysis, we will rely on the zero-knowledge simulator S = (S1,S2) for dvNIZK. First, we define a

hybrid setup algorithm HybridSetup(1λ) that outputs p̃p = (ABE.pp, c̃rs, p̃k) and m̃sk = (ABE.msk, s̃k)

for (stS , c̃rs, p̃k, s̃k)← S1(1λ). We also define hybrid encryption algorithm HybridEncrypt(pp, x,m)
defined as follows:

• Interpret pp = (ABE.pp, crs, pk).

• Compute ABE.ct = ABE.Encrypt(ABE.pp, x,m; ρ) for ρ sampled uniformly at random.

• Compute π ← S2(stS ,x), where x = (ABE.pp,ABE.ct, x) is the statement from Eq. (D.1).

• Output ct = (x,ABE.ct, π).

Now, by zero-knowledge of dvNIZK, we have that for all (f, x,m),

(pp, skf ,Aug.Encrypt(pp, x,m))
c
≈ (p̃p, s̃kf ,Aug.HybridEncrypt(p̃p, x,m)),

where s̃kf = (ABE.skf , s̃k). Moreover, we have that

(p̃p, s̃kf ,Aug.HybridEncrypt(p̃p, x, 0))
c
≈ (p̃p, s̃kf ,Aug.HybridEncrypt(p̃p, x, 1))

by the semantic security of ABE (as HybridEncrypt ciphertexts can be produced in a black-box way
from ABE ciphertexts), and the claim follows.

Lemma D.4. If dvNIZK is adaptively-sound, then Aug is weakly function-hiding.

Proof. We define a weak function hiding simulator Sf(·)(pp,msk, ct) as follows:

1. On input the public parameters pp = (ABE.pp, crs, pk), the master secret key msk = (ABE.msk, sk),
and a ciphertext ct = (x,ABE.ct, π), the simulator calls dvNIZK.Verify(crs, sk,x, π) as in the
honest decryption algorithm, and outputs ⊥ if this verification fails.

2. Otherwise, the simulator makes a single oracle query to f on input x. If f(x) = 1, then the
simulator computes and outputs ABE.Decrypt(ABE.pp,ABE.msk, ct).

We now show that oracle access to this simulator is computationally indistinguishable from oracle
access to the honest decryption algorithm. Suppose that for some function f , some PPT adversary
AO can distinguish between oracle access to the honest decryption algorithm Aug.Decrypt(pp, skf , ·)
with key skf and oracle access to Sf(·)(pp,msk, ·). This means that (with non-negligible probability)
A must make an oracle query on a ciphertext ct = (x,ABE.ct, π) of the following form:

• The statement x = (ABE.pp,ABE.ct, x) is false, and

• The DV-NIZK verifier accepts the proof (x, π).

This is because for every ciphertext ct = (x,ABE.ct, π) associated with a true statement x, the
outputs of ABE.Decrypt(ABE.pp,ABE.skf ,ABE.ct) and ABE.Decrypt(ABE.pp,ABE.msk,ABE.ct) are
identical (provided that f(x) = 1, which is an enforced condition) by correctness of ABE. Moreover,
for every query (x,ABE.ct, π) on which the proof is rejected, the two oracles again behave identically.

We use the above observation to break adaptive soundness of dvNIZK. Namely, we define an
adversary B breaking the soundness of dvNIZK as follows:

55

1. On input (crs, pk), algorithm B samples (ABE.pp,ABE.msk) ← ABE.Setup(1λ), ABE.skf ←
ABE.KeyGen(ABE.msk, f), and constructs (pp,msk) as in Construction D.2.

2. Choose a random index i∗
r← [Q], where Q is a bound on the number of queries A makes. Let

cti = (xi,ABE.cti, πi) be the ith decryption query A makes.

3. Start running algorithm A on input pp = (ABE.pp, crs, pk). Whenever A makes a decryption
query on a ciphertext cti = (xi,ABE.cti, πi), algorithm B makes a verification query on the
statement xi = (ABE.pp,ABE.cti, xi) and proof πi. If the proof fails to verify, algorithm B
replies with ⊥, and otherwise with ABE.Decrypt(ABE.pp,ABE.skf ,ABE.cti), exactly as in the
real scheme.

4. At the end of the experiment, output the statement xi∗ = (ABE.pp,ABE.cti∗ , xi∗) and πi∗

where cti∗ = (xi∗ ,ABE.cti∗ , πi∗).

By construction, B will output an accepting proof on a false statement with non-negligible probability,
contradicting the adaptive soundness of dvNIZK. Thus, we conclude that if dvNIZK is adaptively-
sound, then Aug is weakly function-hiding.

Thus, the augmented ABE scheme from Construction D.2 is a single-key ABE scheme that satisfies
weak function hiding. By Remark 5.4, this yields an AB-SFE scheme that satisfies weak message-
hiding and strong key-hiding.

56

	Introduction
	Our Results
	Recent Related Work
	Our Techniques

	Preliminaries
	Designated-Verifier NIZKs
	Zero-Knowledge PCPs
	Attribute-Based Encryption
	Receiver-Extractable 2-Message OT
	Garbling Scheme
	Non-Interactive Equivocable Commitments
	KDM-Secure Secret-Key Encyryption

	Attribute-Based Secure Function Evaluation
	Designated-Verifier NIZKs from AB-SFE
	Constructing AB-SFE Schemes
	Weak Message-Hiding AB-SFE from Single-Key ABE
	Strong Message-Hiding AB-SFE from Receiver-Extractable OT
	Amplifying Weak Key-Hiding AB-SFE to Strong Key-Hiding AB-SFE
	Instantiations

	Adaptive Soundness via Trapdoor Zero-Knowledge PCPs
	Receiver-Extractable OT from DDH or LWE
	Lattice-Based ABE with Weak Function-Privacy
	Lattice Preliminaries
	Weak Function-Hiding ABE from Lattices

	Strong Key-Hiding AB-SFE from PKE and DV-NIZK

