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Abstract

Succinct non-interactive arguments (SNARGs) enable proofs of NP statements with very low commu-
nication. Recently, there has been significant work in both theory and practice on constructing SNARGs
with very short proofs. Currently, the state-of-the-art in succinctness is due to Groth (Eurocrypt 2016)
who constructed a SNARG from bilinear maps where the proof consists of just 3 group elements.

In this work, we first construct a concretely-efficient designated-verifier (preprocessing) SNARG with
inverse polynomial soundness, where the proof consists of just 2 group elements in a standard (generic)
group. This leads to a 50% reduction in concrete proof size compared to Groth’s construction. We follow
the approach of Bitansky et al. (TCC 2013) who describe a compiler from linear PCPs to SNARGs
in the preprocessing model. Our improvement is based on a new linear PCP packing technique that
allows us to construct 1-query linear PCPs which can then be compiled into a SNARG (using ElGamal
encryption over a generic group). An appealing feature of our new SNARG is that the verifier can
precompute a statement-independent lookup table in an offline phase; verifying proofs then only requires
2 exponentiations and a single table lookup. This makes our new designated-verifier SNARG appealing
in settings that demand fast verification and minimal communication.

We then turn to the question of constructing arguments where the proof consists of a single group
element. Here, we first show that any (possibly interactive) argument for a language L where the
verification algorithm is “generic” (i.e., only performs generic group operations) and the proof consists
of a single group element, implies a witness encryption scheme for L. We then show that under a
yet-unproven, but highly plausible, hypothesis on the hardness of approximating the minimal distance
of linear codes, we can construct a 2-message laconic argument for NP where the proof consists of a
single group element. Under the same hypothesis, we obtain a witness encryption scheme for NP in the
generic group model. Along the way, we show that under a conceptually-similar but proven hardness of
approximation result, there is a 2-message laconic argument for NP with negligible soundness error where
the prover’s message consists of just 2 group elements. In both settings, we obtain laconic arguments
(and linear PCPs) with linear decision procedures. Our constructions circumvent a previous lower bound
by Groth on such argument systems with linear decision procedures by relying on imperfect completeness.
Namely, our constructions have vanishing but not negligible completeness error, while the lower bound of
Groth implicitly assumes negligible completeness error of the underlying argument. Our techniques thus
highlight new avenues for designing linear PCPs, succinct arguments, and witness encryption schemes.
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1 Introduction

This work is motivated by two, seemingly unrelated, questions: (1) How succinct can practical proof systems
be? (2) Can we base witness encryption on “20th century cryptography?” We make progress on both
questions, which turn out to be related, by introducing new techniques for constructing succinct proof
systems in the generic group model. We start with relevant background.

Interactive proof systems [GMR85] provide a general framework that allows a verifier to efficiently check
claims made by a (possibly malicious) prover. The two properties we require from an interactive proof
system are completeness, which says that an honest prover should successfully convince an honest verifier
of a true statement, and soundness, which says that a malicious prover should not be able to convince an
honest verifier of a false statement, except perhaps with small probability referred to as soundness error.

An important metric in the design of interactive proof systems is the communication complexity, and
specifically, the amount of communication from the prover to the verifier. For an NP language, an interactive
proof system is said to be laconic or succinct if the total communication from the prover to the verifier is
sublinear in the size of the NP witness. In the setting of general NP languages, non-trivial savings in the
prover-to-verifier communication (beyond sending the classical NP witness) are unlikely if we require the proof
system to be statistically sound (i.e., sound even against an unbounded prover) [BHZ87, GH98, GVW01,
Wee05b]. If we relax the requirements and only consider proof systems with computational soundness (known
as “argument systems” [BCC88]), significant efficiency improvements are possible.

Starting from the seminal work of Kilian [Kil92], who gave the first construction of an interactive la-
conic argument from probabilistically checkable proofs (PCPs) and collision-resistant hash functions, a large
body of work investigated computationally sound proof systems for NP that have low communication com-
plexity, typically polylogarithmic in the size of the classical NP witness. These include interactive laconic
arguments [GVW01, IKO07], with low prover-to-verifier communication, and succinct non-interactive argu-
ments (“SNARGs” [GW11]) that only include a single, short proof message and may involve a trusted setup
(cf. [Mic00, Mie08, CL08, Gro10, BCCT12, Lip12, BC12, GGPR13, BCI+13, DFGK14, Gro16, BCC+16,
BCC+17, BISW17, BBB+18, BISW18, BBHR19] and the references therein).

Minimizing proof size. A long sequence of works, beginning with the work of Groth [Gro10], has sought
to minimize the concrete proof size in SNARGs for NP. Most of these works rely on a (pairing-friendly)
bilinear group, where soundness is based either on strong and “unfalsifiable” assumptions or is proved in an
idealized “generic group” model [Nec94, Sho97]. Here we will use the simpler generic model formulation.

Groth’s initial construction had proofs with 42 (bilinear) group elements; this was later reduced to 39
elements by Lipmaa [Lip12]. In both constructions, the prover’s computational complexity was quadratic in
the size of the NP verification circuit. Subsequently, using a new characterization of NP based on quadratic
span programs, Gennaro et al. [GGPR13] showed how to construct SNARGs where the proof consists of
just 7 group elements and where the prover computation is quasi-linear in the size of the verification circuit.
Bitansky et al. [BCI+13] introduced a more abstract view of quadratic span programs as implying a “linear
PCP,” where a verifier can make a small number of inner product queries to a proof vector, and described
a general compiler from linear PCPs to SNARGs using a notion called linear-only encryption. A similar
compiler was implicit in [GGPR13], and both of these works follow the high-level blueprint introduced
in [IKO07, Gro10]. Danezis et al. [DFGK14] subsequently refined quadratic span programs to square span
programs and showed how to construct succinct arguments with just 4 bilinear group elements. This line of
work culminated with [Gro16], which showed how to construct succinct arguments with just 3 bilinear group
elements (just over 1000 bits in existing implementations [SCI20]) and with very efficient verification. These
advances in constructing highly succinct arguments with lightweight verification have served as the basis for
a number of efficient implementations [PHGR13, BCG+13, BCG+14, BBFR15]. The work of Groth [Gro16]
raises the following natural question on the possibility of even shorter group-based proofs:

Can we construct succinct arguments where the proof consists of just one or two group elements?

Bitansky et al. [BCI+13] previously showed that by instantiating their compiler with a linear PCP built
from classical PCPs (e.g., [ALM+98]) and with the ElGamal encryption scheme [ElG84], one can obtain
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a designated-verifier SNARG in which the proof consists of just two group elements. (Note that in the
designated-verifier setting, the verifier possesses a secret key that it uses to check proofs [KMO89].) A
limitation of the construction from [BCI+13] is the inherent reliance on “classical” PCPs, where the verifier
is restricted to read individual symbols of the proof instead of the inner-product queries of a linear PCP. This
greatly reduces the concrete efficiency of the resulting construction in comparison to alternative constructions
based on linear PCPs.

Groth’s general construction [Gro16] can also be applied to linear PCPs based on square-span pro-
grams [DFGK14] to obtain a (publicly-verifiable) pairing-based argument where the proof consists of just 2
group elements. The drawback of this particular instantiation of Groth’s construction is that it requires a
symmetric pairing (i.e., a Type I pairing) to implement the verification algorithm. In contrast, the 3-group-
element version of Groth based on square span programs or quadratic span programs can be instantiated
with an asymmetric pairing (i.e., a Type III pairing). Both the verification cost as well as the overall proof
size (in bits) of the 2-group-element construction is higher than those of the 3-group-element construction
(due to the larger parameter sizes needed to instantiate a symmetric pairing group at a target security level).
For comparison purposes in this work, we focus on the most efficient 3-group-element SNARG of Groth.

1.1 Summary of Contributions

In this work, we develop new techniques for constructing designated-verifier SNARGs1 and laconic arguments
for NP where the proof consists of just two elements or even just one element in a standard (rather than
bilinear) generic group, at the cost of settling for non-negligible soundness or completeness error. We
then apply such a proof system to obtain witness encryption under a new (and unproven) hardness of
approximation hypothesis. More concretely, we obtain the following results.

� Concretely-efficient SNARGs with 2 group elements: We introduce a new “packing” tech-
nique for constructing 1-query linear PCPs from k-query linear PCPs. We then apply the compiler
from [BCI+13], in conjunction with ElGamal encryption,2 to obtain a designated-verifier SNARG
where the proofs consist of two group elements (in a pairing-free group). Compared to the pairing-
based SNARGs of [Gro16], our arguments are half as long (64 bytes vs. 127 bytes), and moreover, with
a precomputed verification table, the verification complexity of our SNARG requires only 2 group expo-
nentiations (and 2 multiplications). This is faster (typically by 10x or more) than the verification com-
plexity of [Gro16], which requires 3 pairing operations and multiple exponentiations/multiplications.
Compared to [BCI+13], our SNARGs are based on linear PCPs rather than classical PCPs, so they also
enjoy concretely-efficient prover complexities for small circuits. At the same time, compared to [Gro16],
our constructions are in the designated-verifier setting, have a quadratic-size CRS (as opposed to a
linear-size CRS), and have inverse polynomial soundness error (as opposed to negligible soundness er-
ror). However, the fast verification time and shorter proof size make our construction naturally suited
for a number of scenarios (see Section 1.2).

� Laconic arguments with 2 group elements and negligible soundness error: The aboove
SNARGs, obtained by combining a 1-query linear PCP in conjunction with ElGamal encryption, have
inverse polynomial soundness error. This limitation is due to two factors: (1) the linear PCP verification
procedure is non-linear in the responses (for both the original [BCI+13] proposal based on standard
PCPs as well as the linear PCPs obtained via our packing transformation); and (2) decryption in
the (additively homomorphic variant of) ElGamal encryption requires computing a discrete log. If
however we can construct a 1-query linear PCP with negligible soundness error and where the decision
procedure is linear, then we can apply the [BCI+13] compiler (with ElGamal) to obtain a 2-element
SNARG with negligible soundness error. On the one hand, [Gro16] previously ruled out such a linear

1As we discuss in greater detail in Section 1.2, our constructions naturally extend via standard techniques to provide zero-
knowledge and arguments of knowledge (namely, they are “zkSNARKs”). For simplicity of exposition, we just focus on
SNARGs here.

2Specifically, we rely on the assumption that the ElGamal encryption scheme satisfies linear targeted malleability [BSW12,
BCI+13]. We show in Appendix C.1 that this holds in the standard generic group model [Nec94, Sho97].
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PCP by showing that soundness can be violated by solving a system of linear equations. However,
this previous lower bound only applies if the underlying linear PCP has sufficiently small completeness
error (see Remark 4.9). In this work, by relying on hardness of approximation for problems related
to linear codes, we obtain a 1-query linear PCP with a linear decision procedure, negligible soundness
error, and o(1) (but not negligible) completeness error. The linear PCP we obtain has the property
that the verifier’s queries depend on the statement, and as such, we do not obtain a SNARG via the
[BCI+13] compiler. Instead, we obtain the first group-based laconic argument for NP where the prover’s
message consists of just 2 group elements and has negligible soundness error (either unconditionally in
the generic group model or assuming linear targeted malleability of ElGamal).

� Laconic arguments with 1 group element: We then turn to the question of whether we can
further reduce the prover-to-verifier communication. Here, under a yet-unproven, but highly plausible,
hypothesis on the hardness of approximating the minimal distance of linear codes (Hypothesis 5.12),
we construct a 2-message laconic argument for NP where the prover’s message consists of just a single
group element. We note that while there is a linear PCP associated with this language (Remark 5.18),
our 1-element laconic argument construction does not follow the [BCI+13] compiler, and it is not clear
how to leverage the [BCI+13] compiler to obtain an argument system where the proof is a single group
element. Instead, we give a direct construction of a 1-element laconic argument that is provably secure
in the generic group model, under the hardness of approximation hypothesis mentioned above.

We summarize our main new constructions of SNARGs and laconic arguments in Table 1 and also compare
against existing results.

From laconic arguments to witness encryption. Several works [FNV17, BISW18, BDRV18] have
studied the connection between laconic arguments and different types of encryption schemes. Notably,
Faonio et al. [FNV17] show that any (even non-laconic) argument of knowledge for a language L where the
verifier can predict in advance the prover’s message implies an extractable witness encryption [GGSW13]
scheme for L. As noted in [FNV17], their construction also shows an equivalence between predictable
arguments (without knowledge) and (non-extractable) witness encryption.

Boneh et al. [BISW18] subsequently showed that any 1-bit argument system is predictable for languages
that are hard on average. In this work, we show that a conceptually-similar result holds for argument
systems where the proof consists of a single group element. In particular, we show that any such argument
system that has negligible soundness error, and where the verification algorithm can be implemented by a
“generic” algorithm (i.e., it only performs generic group operations on the proof), must also be predictable.
By [FNV17], such an argument system for a language L implies a witness encryption scheme for L.

As noted above, if our hypothesis on the hardness of approximation for the minimal distance of linear
codes holds, then we obtain a laconic argument for NP with negligible soundness error and where the proof
consists of a single group element in the generic group model. Appealing now to the results above, this
implies a witness encryption scheme for NP in the generic group model. We stress that, in the generic group
model, this result does not rely on any cryptographic assumptions; it only relies on a plausible hardness
of approximation result that may be unconditionally proved in the future. Indeed, there are no known
barriers for strengthening the current hardness results to this more demanding parameter regime [Kho20].
Existing constructions of witness encryption all rely on indistinguishability obfuscation [GGH+13], multi-
linear maps [GGSW13, GLW14, CVW18], or new and yet unexplored algebraic structures [BIJ+20]; thus, a
construction in the generic group model would be considered a major development in this area.

Another intriguing implication of this result is that it effectively rules out negative results for constructing
witness encryption unconditionally in the generic group model. Such negative results (or barriers) are not
only known for powerful primitives such as indistinguishability obfuscation [MMN+16a, MMN+16b], but
also for conceptually-simpler primitives such as identity-based encryption [PRV12]. Note that even though
identity-based encryption can be built from witness encryption for NP (together with a unique signature
scheme) [GGSW13], the resulting construction makes non-black-box use of the group. Thus, a construction
of witness encryption in the generic group model does not conflict with existing lower bounds. Indeed,
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Group Number of Completeness Soundness Proof Verifier PCP vs.
Type Elements Error Error Type Time LPCP

[Gro16] bilinear 2G1, 1G2 0 negl SNARG O(1) LPCP
[BCI+13] linear 8 0 1/poly dvSNARG Oε(s) LPCP
[BCI+13] linear 2 0 1/poly dvSNARG Oε(1) PCP
Cor. 3.19 linear 2 0 1/poly dvSNARG Oε(s) LPCP
Cor. 3.20 linear 2 negl 1/poly dvSNARG Oε(

√
s) LPCP

Cor. 3.21 linear 2 negl 1/poly dvSNARG Oε(1)* LPCP

Cor. 4.7 linear 2 o(1) negl LA O(1) PCP
Cor. 5.16� linear 1 o(1) negl LA O(1) PCP

*Using reusable statement-independent prepossessing with Oε(
√
s) bits of storage.

�This is a conditional result that relies on a plausible (but yet unproven) hypothesis about hardness of approximation of minimal
distance of codes (Hypothesis 5.12).

Table 1: Comparison of our group-based arguments to previous related results. In the “Proof Type”
column, SNARG and dvSNARG refer to publicly-verifiable and designated-verifier SNARGs, respectively, and
LA refers to 2-message laconic arguments where the verifier’s initial message depends on the statement being
proved. Verifier time counts group operations as a function of the size s of the classical NP verifier, ignoring
polylogarithmic factors, and excluding quasilinear-time preprocessing of the input. An ε-subscript treats the
soundness error ε as constant. In the last column, LPCP refers to proof systems obtained from any linear
PCP whereas PCP refers to proof systems that are based on classical PCPs. The latter do not enjoy reusable
soundness and have a very high concrete cost.

an impossibility result for constructing witness encryption in the generic group model would falsify our
hypothesis.

Assumptions vs. structures. We would like to stress that the goal of realizing witness encryption in the
generic group model is very different from the goal of basing witness encryption on “standard” and well-
studied cryptographic assumptions. The latter follows from the very recent indistinguishability obfuscation
construction of Jain et al. [JLS20]. Several other constructions of indistinguishability obfuscation based
on simple-to-state assumptions, mostly related to the learning with errors (LWE) problem [Reg05], were
recently proposed [AP20, GJLS20, BDGM20a, GP20, BDGM20b, WW20]. However, all these recent works
employ very different kinds of computational structures than the group structure we use, and additionally
make a heavy “non-black-box” use of the underlying cryptographic building blocks.

While we are mainly concerned with the kind of structure that suffices for witness encryption, rather than
the concrete assumptions related to this structure, it seems likely that the generic group in our construction
can be replaced by the same kind of standard-model assumptions that were used in the context of SNARGs.
This includes extractability assumptions [Mie08, BCCT12, Gro10], “linear-only” assumptions [BCI+13], or
the algebraic group model [FKL18]. Given the unproven hardness of approximation hypothesis that underlies
our current construction, we view this as a secondary goal.

Finally, it is instructive to draw an analogy between our goal and the celebrated oracle separation result
of Impagliazzo and Rudich [IR89]. Impagliazzo and Rudich ask whether “cryptomania” can be reduced to a
simple structure used for “minicrypt,” where the former is represented by the goal of public-key encryption
and the latter by a random oracle. We ask whether (the outskirts of) “obfustopia” can be reduced to a
simple structure used for “cryptomania,” where the former is represented by the goal of witness encryption
and the latter by a random group oracle. Whereas Impagliazzo and Rudich gave a negative answer to their
question, we give evidence that the answer to our question may be positive.
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1.2 Concretely-Efficient SNARGs with 2 Group Elements

In this section, we provide an overview of our concretely-efficient SNARGs where the proof consists of 2 group
elements. Our starting point in this work is the compiler from [BCI+13] (also implicit in [GGPR13]) that
compiles a linear PCP into a SNARG in the preprocessing model using a “linear-only” encryption scheme
(i.e., an additively-homomorphic encryption scheme that only supports affine operations on ciphertexts).3

Here, the preprocessing model refers to a SNARG where the running time of the setup algorithm is allowed to
depend polynomially in the size of the classical NP verifier. We begin with a brief overview of this compiler.

Linear PCPs. A linear PCP for an NP language L over a finite field F is defined by a linear oracle
π : F` → F. On a query q ∈ F`, the linear PCP oracle responds with the inner product qTπ. More generally,
we can view the linear PCP queries as the columns of a query matrix Q ∈ F`×k and the oracle’s operation
as computing QTπ. To verify a proof of a statement x, the verifier submits a query matrix Q to the oracle
and receives back a set of responses QTπ. In this case, k denotes the number of linear PCP queries the
verifier makes. For the language of (Boolean or arithmetic) circuit satisfiability, there exist efficient 3-query
linear PCPs based on the quadratic span programs of [GGPR13] with query length ` = O(s), where s is
the size of the circuit. A 2-query variant based on square span programs was given in [DFGK14]. We
construct a 2-query linear PCPs based on the Walsh-Hadamard code (see Appendix B) where ` = O(s2).
This construction improves on the 3-query construction from [ALM+98, IKO07] and, unlike the 2-query
construction from [DFGK14], has the feature that the queries can be generated by quadratic (degree-2)
polynomials. This feature turns out to be useful towards the goal of efficient 1-query linear PCP.

The Bitansky et al. compiler. A general “cryptographic compiler” of Bitansky et al. [BCI+13] takes
any linear PCP and a linear-only encryption scheme and outputs a preprocessing SNARG. If the linear PCP
satisfies additional properties such as zero knowledge or knowledge soundness, then the resulting SNARG also
inherits those properties (i.e., we can obtain a “zkSNARK”). The idea behind the [BCI+13] compiler is the
following: first, they compile a linear PCP into a two-message linear interactive proof (LIP) by introducing
an additional consistency check. In this model, the prover is allowed to compute any affine function of
the verifier’s queries (the linear PCP model is more constrained in the sense that the prover has to apply
the same linear function to each of the verifier’s queries). To go from a LIP to a preprocessing SNARG,
the verifier encrypts its queries using a linear-only encryption scheme and publishes the ciphertexts as part
of the common reference string (CRS). To construct a proof, the prover takes its statement and witness,
computes the linear function π, and homomorphically evaluates π on the encrypted queries (this is possible
since the honest prover’s strategy is linear). The proof is the encrypted set of responses. In the designated-
verifier model, the verifier decrypts the responses and applies the standard LIP verification procedure (if
the verifier’s decision procedure is quadratic, a pairing can be used to perform the verification check “in
the exponent,” yielding a publicly-verifiable SNARG). Overall, the [BCI+13] compiler takes any k-query
linear PCP and compiles it into a preprocessing SNARG where the proofs consist of (k + 1) ciphertexts of
the underlying linear-only encryption scheme. Under the assumption that the classical ElGamal encryption
scheme [ElG84] is linear-only (when the message is encrypted in the exponent), this framework can be used
to obtain a SNARG where the proof size consists of (k + 1) ElGamal ciphertexts, or equivalently, 2(k + 1)
group elements.

1-query linear PCPs. First, we note that any 1-query linear PCP is itself a 2-message linear interactive
proof, and hence, can be directly compiled into a preprocessing SNARG via the [BCI+13] compiler where the
proof consists of just a single ciphertext (i.e., 2 group elements in the case of ElGamal). However, as noted
above, efficient instantiations of linear PCPs based on the Hadamard PCP [ALM+98, IKO07], quadratic
span programs [GGPR13] or square span programs [DFGK14, Gro16] all require at least 2 queries, and

3Technically, a weaker property called linear targeted malleability [BSW12] suffices for a basic version of the compiler. For
ease of exposition, we present everything here using the concept of linear-only encryption. We formally define linear targeted
malleability in Definition A.6.
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thus, cannot be directly compiled into a preprocessing SNARG with 2 group elements. If we start instead
from a classical PCP (rather than a linear PCP), then [BCI+13] shows how to construct a 1-query linear
PCP, which in conjunction with ElGamal encryption, yields a SNARG with 2-group elements (and inverse
polynomial soundness error). However, the use of classical PCPs in this construction incurs a high concrete
cost, despite significant optimization efforts [BBC+17], even for small verification circuits. As a result,
the concrete efficiency of the resulting SNARG is not competitive with existing pairing-based constructions
based on efficient linear PCPs. Furthermore, the low entropy of the queries in the PCP-based construction
from [BCI+13] prevents the scheme from achieving reusable soundness.4 In this work, we introduce a new
approach to constructing 1-query linear PCPs without relying on traditional PCPs. The resulting 1-query
linear PCP has reusable soundness (Remark 3.17).

Linear PCP packing. Our first result in this work is a method to pack a k-query linear PCP into a
1-query linear PCP. Our packing construction is most naturally viewed by considering a linear PCP over
the integers.5 Namely, consider a linear PCP where both the query matrix Q ∈ Z`×k and the proof π ∈ Z`
consist of vectors over the integers. Clearly, any linear PCP over a finite field Fp yields a linear PCP over the
integers Z by having the verifier reduce the responses modulo p. We now say that a linear PCP is B-bounded
if for every honestly-generated query matrix Q ∈ Z`×k and proof vector π ∈ Z` we have ‖QTπ‖∞ < B (i.e.,
the magnitude of every response is less than B). Let q1, . . . ,qk ∈ Z` be the individual queries (i.e., the
columns of Q). Consider the vector qpacked =

∑
i∈[k]B

i−1qi ∈ Z`. Then,

a = qT
packedπ =

∑
i∈[k]

Bi−1qT
i π ∈ Z.

If |qT
i π| < B, then a represents an integer in base B where the ith digit is the ith response qT

i π. Thus, by
making a single query qpacked (with much larger coefficients), the verifier is able to decode all k responses
and implement the verification procedure for the underlying linear PCP. As described, it is not clear that the
above approach is sound: namely, an adversary can choose a malicious proof vector π such that QTπ is not
B-bounded: then, the tuple of responses decoded using the above procedure would yield a tuple that is not
consistent with applying a single consistent linear strategy to all of the query vectors. We solve this problem
by randomizing the query-packing procedure, similarly to the packing compiler from [BCI+13] for classical
PCPs. Namely, instead of using a fixed scaling factor B, the verifier sets r1 = 1 and samples r2, . . . , rk from
a sufficiently-large interval and computes the packed query vector as qpacked =

∑
i∈[k] qi

∏
j≤i rj . We can

now argue that over the verifier’s randomness, any adversarial strategy that exceeds the bound will cause
the verifier to reject with high probability. We give the construction and analysis in Section 3.

We have now shown how to pack a k-query linear PCP over the integers to obtain a 1-query linear PCP
over the integers. To apply the [BCI+13] compiler, we require a linear PCP over a finite field F. Here, we
note that we can directly embed the operations over the integers into a sufficiently large finite field (e.g., if
Bpacked is a bound on qT

packedπ, it suffices to work over a field Fp where p > 2Bpacked). If we start with a
linear PCP over Fp and desire a packed linear PCP over the same field Fp, then the linear PCP responses
should be small.6 We refer to the resulting linear PCP as a “bounded” linear PCP over Fp. The Hadamard
linear PCP has this property (see Appendix B), so using our basic query-packing transformation, we obtain
a 1-query bounded linear PCP over Fp with query length ` = O(s2), where s is the size of the NP verification
circuit. A natural question is whether we can obtain a 1-query linear PCP with query length O(s) starting
from the quadratic span programs of [GGPR13]. As we explain in Remark 3.13, we are not able to leverage
our packing transformation because the queries in those constructions have large coefficients, and thus, do
not seem directly amenable to our packing approach.

4Indeed, by flipping one bit of an honestly-generated PCP, a malicious prover can mount a selective failure attack that makes
the verifier reject with high probability if this bit is being queried.

5While we present the general ideas using linear PCPs over the integers, the construction in Section 3 embeds the integer
operations over a large finite field Fp.

6If the packing transformation requires the use of a larger field than that of the underlying linear PCP, this can negate the
benefit of the packing.
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Concretely-efficient 2-element SNARGs. Starting from our 1-query linear PCP above, we directly
invoke the [BCI+13] compiler with ElGamal encryption to obtain a designated-verifier SNARG in the pre-
processing model where the proof consists of 2 group elements. One caveat with ElGamal is that the scheme
encodes the message in the exponent (i.e., the decryption algorithm recovers ga rather than a). In the context
of the [BCI+13] compiler, this means the linear PCP response is in the exponent, and the verifier has to
compute the discrete logarithm in order to verify the proofs; if the size of the response is B-bounded, this
can be done in time Õ(

√
B) using Pollard’s kangaroo algorithm [Pol78]. For this to be efficient, we thus

require that the responses are in a polynomial-size interval. Of course, this means that the soundness error
achievable using the ElGamal instantiation will be inverse polynomial in the security parameter (rather than
negligible). This is because there are now only polynomially-many possible values that causes the verifier to
accept, so a malicious prover can guess an accepting value with 1/poly probability. This yields a trade-off
between the soundness error ε and the verifier’s time complexity (namely, smaller soundness error means that
the responses have to be drawn from a larger interval, which increases the running time of the discrete log
algorithm). Thus, when compiling linear PCPs to SNARGs using ElGamal, it is natural to consider bounded
linear PCPs, which provide a direct trade-off between soundness error and the bound (see Corollary 3.14).

The bound on our 1-query linear PCP based on the Hadamard construction scales with O(s4), which
means the resulting ElGamal-based SNARG will have verification complexity that scales quadratically with
the circuit size. This is both undesirable and impractical for real scenarios. However, by taking advantage
of the structure of the Hadamard linear PCP, we can reduce the verification complexity to Õ(

√
s/ε) if we

allow for a negligible completeness error (as opposed to perfect completeness). The high-level idea here is
that in the Hadamard linear PCP (Appendix B.1), one of the (unpacked) query responses is small and lies

in an interval of size Õ(
√
s/ε) with overwhelming probability. This means that instead of having the verifier

solve the discrete log to obtain the full linear PCP response, the verifier can instead check whether the
decrypted response corresponds to one of the (polynomially-many) accepting values of the Hadamard linear
PCP. Thus, we obtain a designated-verifier SNARG with 1/poly soundness error where the proof consists of

exactly 2 group elements and the verifier runs in time Õ(
√
s/ε). We provide the details in Section 3.2.

Preprocessing to achieve constant running time. Our approach for reducing the verification time in
the ElGamal-based SNARG described above relies on there only being a small number of accepting values
(that depend on the statement and the verifier’s secret key). In Section 3.2, we show that at setup time,
the verifier can perform a statement-independent preprocessing step (which only depends on the verifier’s

secret verification state) and prepare a lookup table of size Õ(
√
s/ε). With this lookup table, the verification

procedure reduces to performing 2 exponentiations and 2 group multiplications, followed by a single table
lookup. This yields a much faster verification procedure compared to even the SNARG from [Gro16], which
requires computing 3 pairing operations (in addition to multiple exponentiations and group multiplications).
In this model, we obtain SNARGs that are both 50% shorter than those from [Gro16] (64 bytes for our
construction vs. 127 bytes for [Gro16, SCI20]) and significantly faster to verify. Based on timings provided
in libsnark [SCI20], the verifier’s running time in [Gro16] is 1.2ms, while based on our estimates, two group
exponentiations and two multiplications would take 0.1ms, which is over 10x faster (see Section 3.3 for details
on our performance estimates). This makes our designated-verifier SNARGs well-suited for environments
that demand very succinct proofs and low-latency or low-energy verification.

Concrete efficiency estimates. In Table 2, we provide concrete estimates on the size of the CRS, the
prover complexity, and the verifier complexity. With preprocessing, the primary cost for the verifier is the
storage of the lookup table and without preprocessing, the primary cost is the verification time. Here,
we apply the additional (standard) transformation to obtain a zkSNARK (described in Section 3.2 and
Remark 3.22). We describe our methodology for computing these estimates in Section 3.3.

The main appeal of our new designated-verifier zkSNARKs is that with preprocessing, it has extremely
lightweight verification. The proofs consist of just two group elements and with a modestly-sized lookup
table (e.g., for circuits with over 15,000 wires and soundness error 1/128, a lookup table of size just over 20
MB suffices). Our schemes are well suited in scenarios where the verifier has a modest amount of memory,
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but is otherwise low energy or computationally constrained. They are also well-suited in settings where the
verifier might be receiving and authenticating requests from a large number of provers.

One appealing application is to combine the zkSNARK with a one-way function to construct an identi-
fication scheme. Here, a user’s secret key is a random element in the domain of a one-way function and the
public key is its image under the one-way function. To authenticate, the user would provide a zkSNARK
proving knowledge of their secret key (i.e., the pre-image under the one-way function) associated with their
public key. One way to instantiate the required one-way function is to use Goldreich’s simple one-way
function based on expander graphs [Gol00], which can be computed by a Boolean circuit with just 1200
gates [CDM+18, BIJ+20] (or 1500 wires). In this case, the CRS size is around 34 MB and the prover’s
computation would take just a few seconds of computation. With a moderate soundness error of 1/128, the
verifier only needs to maintain a table with just over 6 MB of storage. If the bottleneck in the system is
sending proofs and authenticating credentials, then our construction offers a compelling solution. Moreover,
the expressive nature of zkSNARKs lends itself naturally towards implementing more complex authentication
policies (e.g., the user’s credential is valid and moreover, satisfies some simple Boolean predicate).

While our construction achieves a lower level of soundness compared to pairing-based alternatives, sce-
narios where there are severe out-of-band consequences for getting caught cheating (even once) can provide
strong incentives for honest behavior. This is conceptually similar to the notion of covert security in multi-
party computation [CO99, AL07]. Similarly, while our constructions do not provide perfect zero-knowledge,
the effects of any potential leakage can be mitigated (in the above setting with an identification scheme)
by using a leakage-resilient one-way function. Moreover, in the setting of short-lived tokens or credentials,
the user can simply refresh their credential after a certain number of requests (based on the zero-knowledge
parameter of the system).

More broadly, we believe that our new preprocessing zkSNARKs are appealing in terms of proof size
and verifier complexity. It is interesting to further optimize our methods to support more complex cir-
cuits. In Remark 3.16, we describe one approach based on constructing specially-designed circuits that are
“Hadamard-friendly,” which can then be efficiently-checked using a linear PCP (with small amortized query
size), and correspondingly, enable a more concretely efficient zkSNARK.

1.3 From Hardness of Approximation to Witness Encryption

A limitation of the SNARG constructions based on instantiating the [BCI+13] compiler with ElGamal is
that they only provide 1/poly soundness error. Part of this stems from the inherent challenge that recovering
the linear PCP responses from an ElGamal ciphertext requires computing discrete log, which restricts us to
linear PCPs whose responses lie in a polynomial-size set (and correspondingly, yields SNARGs with inverse
polynomial soundness error). However, Bitansky et al. [BCI+13] point out that if we had a linear PCP with
a linear decision procedure and if we apply the compiler using ElGamal encryption, the verifier no longer
needs to decrypt the responses. Instead, it can simply check the verification procedure “in the exponent.”
This provides a general template for constructing a succinct argument based on ElGamal that can achieve
negligible soundness error. While Bitansky et al. motivate the search for a linear PCP with a linear decision
procedure, they do not suggest a candidate.

1-query linear PCP with negligible soundness error from hardness of approximation. In this
work, we introduce a new approach for constructing linear PCPs based on the hardness of approximating
problems related to decoding linear codes. Specifically, we construct a 1-query linear PCP with a linear
decision procedure and negligible soundness error. Our construction affirmatively answers the above question
posed by Bitansky et al. on whether there exists a linear interactive proof with a linear decision procedure.
We note, however, that the linear PCP we construct is instance-dependent (i.e., the verifier’s query depends on
the statement being verified). As such, applying the [BCI+13] compiler yields a 2-message laconic argument
where the prover’s message consists of 2 group elements.

Previously, Groth [Gro16] ruled out the possibility of 2-message linear interactive proofs with a linear
decision procedure for languages that are hard on average. Implicit in his lower bound is the assumption
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Circuit CRS Prover Soundness Verifier Space Verifier Time
Size Size Time Error (with Preproc.) (without Preproc.)

210 16MB
262K 2−1 58KB 23K(0.33s)

(3.6s) 2−7 5.3MB 1.5M (21.28s)
2−14 923.4MB 194M (45m21s)

212 256MB
4.2M 2−1 126KB 47K (0.66s)

(58s) 2−7 11.2MB 3M (42.57s)
2−14 1.9GB 389M (1h30m)

214 4GB
67M 2−1 270KB 95K (1.33s)

(15m40s) 2−7 23.5MB 6M (1m25s)
2−14 3.9GB 778M (3h1m)

Table 2: Concrete efficiency estimates for our designated-verifier zkSNARK based on ElGamal (see Sec-
tion 3.2 and Remark 3.22 for details on how to extend the basic SNARG to a zkSNARK). For different
circuits sizes (number of wires in a Boolean circuits with fan-in 2 gates) and soundness levels, we measure
the CRS size (in group elements), the prover time complexity (in number of group operations), and the
verifier complexity (with preprocessing, this corresponds to the size of the lookup table and without prepro-
cessing, this corresponds to the number of group operations needed for online verification). The proof size
for all of the parameter settings consists of just two group elements (64 bytes), and with preprocessing, the
verification cost is just 2 exponentiations (and 2 multiplications). We set the completeness error to 2−40 and
the zero-knowledge parameter to achieve 0.1-statistical zero knowledge. Without zero knowledge, we can
reduce the size of the verifier’s lookup table or the verifier time (when there is no preprocessing) by 8x. For
the concrete timing estimates, we base them on measurements taken using the libsodium implementation
of the Curve25519 elliptic curve [Ber06] (see Section 3.3 for further details).

that the underlying proof satisfies perfect completeness (or more generally, has negligible completeness error).
Our 1-query linear PCP construction has a small, but noticeable, o(1) completeness error which avoids this
impossibility. We discuss this in greater detail in Remark 4.9.

Our linear PCP construction relies on the hardness of approximation for the gap minimum weight solution
problem (GapMWSP) [KPV12]. At a high level, a problem instance for GapMWSPβ is a triple (A,b, d) where

A ∈ F`×n, b ∈ F`, d ∈ N, and F is a finite field. The goal is to decide between the following two cases:

� yes instance: there is a solution x ∈ Fn to the linear system Ax = b with Hamming weight at most d;

� no instance: all solutions x ∈ Fn to the linear system Ax = b have Hamming weight at least β · d.

The gap β is referred to as the approximation factor. We will rely on NP-hardness7 of the above promise
problem for some β = β(n) ≥ polylog(n). While this problem is traditionally formulated over the binary
field F2, we show that the same NP-hardness reduction (from the GapLabelCover problem [Raz95]) extends
to general finite fields (Lemma 4.2).

We can construct a linear PCP for the GapMWSP problem in a straightforward manner (this in turn yields
a linear PCP for NP by first applying a Karp-Levin reduction to GapMWSP). The linear PCP query for an

instance (A,b, d) consists of a random vector r
r← F` and a sparse vector e ∈ Fn where each component of e is

either uniform over F or 0. The query is the vector qT = rTA+eT ∈ Fn. The proof for an instance (A,b, d) is
a vector π ∈ Fn where Aπ = b and π has small Hamming weight wt(π) ≤ d. Finally, given a response a ∈ F,
the verifier simply checks whether a = rTb. Suppose that Aπ = b. Then, qTπ = rTAπ+eTπ = rTb+eTπ.
Completeness follows as long as eTπ = 0. This happens with 1 − o(1) probability since both e and π are
sparse (i.e., eTπ is nonzero only if both e and π have a nonzero component in the same coordinate, which

7Here and in the following, we refer to NP-hardness of relations with respect to Karp-Levin reductions. See Section 2 for a
formal definition.
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happens with small, but noticeable, probability over the randomness of e). Conversely, for a no instance, all
solutions to the linear system Ax = b have Hamming weight at least βd. In this case, for any proof vector
π, either Aπ 6= b (in which case, the verifier rejects except with probability 1/|F| over the randomness of
r) or if Aπ = b, then π has large Hamming weight and eTπ will be nonzero with overwhelming probability
over the choice of e. Hence, we obtain an instance-dependent 1-query linear PCP with a linear decision
procedure from the GapMWSP problem, and correspondingly, a 2-message laconic argument with negligible
soundness error and where the proof size consist of just 2 group elements by invoking the [BCI+13] compiler
with ElGamal encryption. We provide the full description and analysis in Section 4.

From laconic arguments to witness encryption. Given a laconic argument where the proof consists
of just two group elements, a natural question to ask is whether we can have an argument that is even
shorter: namely, a laconic argument with just a single group element. From a conceptual perspective, this
question has a similar flavor to the notion of a “1-bit SNARG” introduced in [BISW18]. There, they showed
that a 1-bit SNARG for a hard language is in fact “predictable” (i.e., the verifier can predict the value of
an accepting proof), and by leveraging the result from [FNV17], implies a witness encryption8 scheme for
the underlying language. As it turns out, laconic arguments where the prover’s message is a single group
element and where the verification algorithm only consists of generic group operations are similarly powerful.
As we show in Corollary 5.10, any 1-element laconic argument that has negligible soundness error and a
“generic” verification algorithm (i.e., it only performs algebraic operations over group elements) implies
witness encryption for the underlying language. This means that improving our 2-element laconic argument
to a 1-element laconic argument provides a promising new path towards realizing witness encryption from
more traditional and well-understood cryptographic assumptions. We provide the details in Section 5.1.

1-element laconic argument from hardness of approximation. It is not clear how to leverage our
1-query linear PCP from the GapMWSP problem to obtain a laconic argument where the proof consists of
just a single group element. Indeed, any application of the [BCI+13] compiler with ElGamal would yield
an argument system where the proof consists of at least 2 group elements (since the proof will contain at
least one ElGamal ciphertext). However, we show that assuming a conceptually-similar, but yet-unproven
hypothesis on the hardness of approximating the minimal distance of linear codes, we can leverage similar
ideas used to construct our linear PCP from GapMWSP to directly construct a 1-element laconic argument
with negligible soundness error in the generic group model. The resulting argument is predictable in the
sense of [FNV17] (even without applying our generic transformation above), and thus, implies a witness
encryption scheme for NP in the generic group model. While the hypothesis we rely on is unproven, there
are no known barriers for extending the current hardness of approximation results for the minimal distance
problem to the more challenging parameter regime needed for our construction [Kho20].

Our 1-element laconic argument relies on the NP-hardness of approximating the minimal distance of a
linear code (GapMDP). For an approximation factor β > 0, a GapMDPβ instance (A, d) consists of a matrix
A (over a finite field F) and a distance d ∈ N. The problem is to decide whether the minimum distance
(under the Hamming metric) of the code generated by A is at most d or greater than β · d. Equivalently,
we can use the following dual formulation. An input instance is a pair (H, d), for a parity-check matrix
H ∈ F`×k (corresponding to the code generated by A in the previous formulation) and a distance bound d.
The goal is to decide between the following two cases:

� yes instance: there exists 0 6= v ∈ F`p with Hamming weight at most d such that Hv = 0.

� no instance: For all 0 6= v ∈ F`p with Hamming weight ≤ β · d, we have Hv 6= 0.

Note that GapMDP can be viewed as a homogeneous variant of GapMWSP. Based on the hypothesis that
GapMWSPβ is NP-hard for some β = ω(log n) and fields Fp of super-polynomial size, we construct a 1-element

8In a witness encryption scheme [GGSW13], the prover can encrypt a message to an NP statement x such that anyone with
knowledge of the witness w is able to decrypt and recover the message. This is a very powerful notion of encryption whose
only instantiations rely on indistinguishability obfuscation [GGH+13] (see Section 1.1 for recent developments), multilinear
maps [GGSW13, GLW14, CVW18], or new and relatively unexplored algebraic structures [BIJ+20].
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laconic argument for the GapMDPβ language with negligible soundness error in the generic group model.
We use the same principles we used to construct the 1-query linear PCP for GapMWSPβ . The construction
operates over a group G of prime order p with generator g (which we will model as a generic group for the
security analysis). The construction works as follows:

� Query generation: The verifier samples random vectors c
r← Fkp r

r← Fkp and a scalar s
r← Fp.

It also samples a noise vector e ∈ Fkp, where the entries of e are either 0 or uniform over Fp. The
density of e is chosen to balance the completeness and soundness requirements. The verifier computes
zT = rTH+scT +eT ∈ Fkp. The query is the pair (c, gz) where gz denotes the vector of group elements
(gz1 , . . . , gzk), and z = (z1, . . . , zk).

� Prover’s response: For a yes instance (H, d) to the GapMDP problem, the witness is a nonzero
vector v ∈ Fkp such that Hv = 0 and v has low Hamming weight. On input the query c and gz and

the witness v ∈ Fkp, the prover computes t = (cTv)−1 and replies with the single group element gt·z
Tv.

� Verification: To verify the proof π, the verifier checks that π = gs.

We now informally describe the completeness and soundness analysis:

� Completeness: For a yes instance, the (nonzero) witness v satisfies Hv = 0 and moreover v has
low Hamming weight. If the noise vector e is sufficiently sparse, then with high probability, eTv = 0.
Thus,

zTv = rTHv + scTv + eTv = scTv.

In this case, gt·z
Tv = gs since t = (cTv)−1. Note that since c is uniform (and independent of v), and

v 6= 0, the scalar cTv is nonzero with overwhelming probability, and thus invertible.

� Soundness: For the soundness analysis, we model the group as a generic group. Since the prover
only has an encoding gz of z ∈ Fkp, in the generic group model, the only components that it can

construct are of the form gz
Tw+δ for some choice of w ∈ Fkp and δ ∈ Fp. Here, w and δ can depend

on the parity-check matrix H and the vector c, but can be considered to be independent of r, e, and
s in the generic group model (we refer to Section 5.2 for the formal analysis). The prover succeeds if
zTw + δ = rTHw + scTw + eTw = s. We consider three possibilities:

– If w = 0, then zTw + δ = δ. Since s is uniform over Fp (and independent of δ), the verifier rejects
with probability 1− 1/p.

– If w 6= 0, the Hamming weight of w is at most β · d, and we have a no instance, then Hw 6= 0.
In this case, over the randomness of r (which is uniform and independent of H and w), the value
of rTHw 6= 0 is uniform over Fp and the verifier rejects with probability 1− 1/p.

– Alternatively, if w has Hamming weight larger than β ·d, and e is sufficiently dense (and indepen-
dent of w), then with overwhelming probability, there is some component ei such that eiwi 6= 0,
and so eTw 6= 0. In this case, the value of eTw is uniform over Fp and the verifier rejects with
probability 1− 1/p.

This means that for any choice of w, δ that the prover chooses, the probability that zTw + δ = s is
negligible (over the randomness of r, e, and s).

Observe that in the above analysis, we require e to be sufficiently sparse for completeness to hold with high
probability and sufficiently dense for soundness to hold with overwhelming probability. For this reason, we
require that the gap β be large enough so as to satisfy both constraints. In particular, taking β = ω(log n)
suffices for our analysis. We provide the full description of the scheme and its analysis in Section 5.2.

To obtain a 1-element laconic argument for NP (and correspondingly, a witness encryption scheme for
NP), we need to assume that the above GapMDPβ problem is NP-hard for some choice of β = ω(log n) and Fp
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is a finite field of super-polynomial size. More precisely, we require that there is a deterministic polynomial-
time Karp-Levin reduction from NP to GapMDPβ (i.e., there exists an efficient algorithm that maps an
NP statement to a GapMDPβ instance and a witness for the NP statement to a witness for the GapMDPβ
instance). Existing hardness of approximation results show that over polynomial-size fields, the GapMDP
problem is NP-hard for constant approximation factors β = O(1), and NP-hard under a deterministic quasi-

polynomial time reduction for “almost-polynomial” approximation factors β = 2log1−ε(n). Thus, proving
our hypothesis (Hypothesis 5.12) requires strengthening existing hardness results in two directions: (1)
arguing NP-hardness for some β = ω(log n) under a polynomial-time reduction; and (2) extending the
hardness result to super-polynomial prime order fields. As mentioned above, while our existing techniques
do not seem sufficient, there are also no known barriers to showing the hardness of approximation results we
require [Kho20]. If our hypothesis is true, then we obtain an unconditional construction of witness encryption
for NP in the generic group model.

Witness encryption via GapMWSP? While GapMDP and GapMWSP are conceptually similar, it seems
challenging to obtain a 1-element laconic argument (and correspondingly, a witness encryption scheme)
directly from GapMWSP. In particular, if we embed the linear PCP query qT = rTA + eT from the
GapMWSP construction in the exponent (in a similar manner as above) and the prover is able to find an

input x with low Hamming weight where Ax = 0, then the prover learns ge
Tx. Since both e and x have low

Hamming weight, the inner product eTx will be 0 with noticeable probability; this leaks information about
the non-zero indices of e. Observe that the GapMDP problem explicitly rules out the existence of nonzero
vectors x with low Hamming weight where Ax = 0. We provide more details in Remark 5.19.

However, we note that if we have an ideal obfuscation scheme [BGI+01] for membership testing for affine
subsets of Fn, then it is possible to obtain a 1-element laconic argument as well as a witness encryption
scheme for NP without needing Hypothesis 5.12. The affine subset membership testing program we need to
obfuscate closely resembles the types of programs supported by lockable obfuscation or compute-and-compare
obfuscation [GKW17, WZ17]. Unfortunately, as we discuss in Remark 5.20, the existing constructions do not
currently suffice to realize a witness encryption scheme. Nonetheless, the approach we develop in this work
may provide another direction towards constructing witness encryption (without needing Hypothesis 5.12).

2 Preliminaries

For a positive integer n ∈ N, we write [n] to denote the set {1, . . . , n}. We write F to denote a finite field. We
will use bold lowercase letters (e.g., v,w) to denote vectors and bold uppercase letters (e.g., A,B) to denote
matrices. For a vector v ∈ Fn, wt(v) denotes the Hamming weight of v (i.e., the number of nonzero entries
in v). For a matrix A ∈ Fn×m, we write dist(A) to denote the minimum distance of the code generated by
A. (i.e., the minimum Hamming weight of a nonzero codeword generated by A).

We write λ to denote a security parameter. We say that a function f is negligible in λ, denoted negl(λ)
if f(λ) = o(1/λc) for all c ∈ N. We say an event happens with negligible probability if the probability of the
event happening is negligible, and that it happens with overwhelming probability if its complement occurs
with overwhelming probability. We say an algorithm is efficient if it runs in probabilistic polynomial time
in the length of its input. We write poly(λ) to denote a function that is bounded by a fixed polynomial in λ
and polylog(λ) to denote a function that is bounded by poly(log λ). We say that two families of distributions

D1 = {D1,λ}λ∈N and D2 = {D2,λ}λ∈N are computationally indistinguishable (denoted D1
c
≈ D2) if no efficient

adversary can distinguish samples from D1 and D2 except with negligible probability. We say that D1 and

D2 are statistically indistinguishable (denoted D1
s
≈ D2) if the statistical distance between D1 and D2 is

negligible. We will also use the Schwartz-Zippel lemma and Hoeffding’s inequality in our analysis:

Lemma 2.1 (Schwartz-Zippel [Sch80, Zip79]). Let f ∈ F[x1, . . . , xn] be a multivariate polynomial of total
degree d over F, not identically zero. Then for any set S ⊆ F,

Pr[f(α1, . . . , αn) = 0 | α1, . . . , αn
r← S] ≤ d/|S|.
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Fact 2.2 (Hoeffding’s Inequality [Hoe63]). Let X1, . . . , Xn be independent random variables where Xi ∈
[−B,B] for some bound B > 0. Let Sn =

∑
i∈[n]Xi. Then,

Pr[|Sn − E[Sn]| ≥ t] ≤ 2 exp

(
− 2t2

nB2

)
NP problems and reductions. We say that there is a Karp reduction from a problem Π ⊆ {0, 1}∗ to
a problem Π′ ⊆ {0, 1}∗ if there exists an efficiently-computable mapping f such that x ∈ Π if and only
if f(x) ∈ Π′. When Π,Π′ ∈ NP with associated NP relations R,R′, respectively, we say that there is a
Karp-Levin reduction from R to R′ (or from Π to Π′) if there additionally exists an efficiently-computable
mapping g such that R(x,w) = 1 if and only if R′(f(x), g(x,w)) = 1.9 We note that natural NP-complete
relations are typically NP-complete also with respect to the stronger notion of Karp-Levin reduction.

In this work we will also consider promise problems Π where Π = (Πyes,Πno) is a pair of disjoint sets
Πyes,Πno ⊆ {0, 1}∗. The union Πyes ∪ Πno is called the “promise.” Elements of Πyes are yes instances and
elements of Πno are no instances. Every NP promise problem Π = (Πyes,Πno) is additionally characterized
by an efficiently-computable relation R with the following properties:

� For all x ∈ Πyes, there exists a witness w ∈ {0, 1}poly(|x|) such that R(x,w) = 1;

� For all x ∈ Πno and all w ∈ {0, 1}∗, R(x,w) = 0.

Note in particular that there are no guarantees on the behavior of R(x, ·) when x /∈ Πyes ∪ Πno. We say
that there is a Karp reduction from an NP problem Π to an NP promise problem Π′ = (Π′yes,Π

′
no) if there

exists an efficiently-computable mapping f such that x ∈ Π =⇒ f(x) ∈ L′yes and x /∈ Π =⇒ f(x) ∈ Π′no.
In particular, the function f always outputs either a yes instance or a no instance for the promise problem.
Similarly, if R is the NP relation associated with Π and R′ is the NP relation associated with the NP promise
problem Π′, we say that there is a Karp-Levin reduction from R to R′ if in addition to the function f ,
there also exists an efficiently-computable function g such that for all x ∈ Π, R(x,w) = 1 if and only if
R′(f(x), g(x,w)) = 1. Much like the case with reductions between NP-complete problems, many natural
hardness of approximation results for NP optimization problems also hold with respect to the stronger notion
of Karp-Levin reductions.

Prime order groups. All of our cryptographic constructions in this work are defined over a pairing-free
group G of prime order p. We define the notion of a prime-order group generator below.

Definition 2.3 (Prime-Order Group Generator). A prime-order group generator algorithm GroupGen is
an efficient algorithm that on input the security parameter 1λ outputs a description G = (G, p, g) of a
prime-order group G with order p and generator g. Throughout this work, we will assume that p = 2Θ(λ).

In our analysis, we will sometimes model the group G as a “generic group” [Nec94, Sho97]. We provide
the definition of the generic group model in Appendix C. Additionally, we recall the definition of a succinct
non-interactive argument, laconic arguments, as well as the [BCI+13] compiler in Appendix A.

Arithmetic circuit satisfiability. A central part of this work is constructing succinct argument systems
for the language of Boolean circuit satisfiability. When describing some of our constructions however, it will
oftentimes be more natural to consider the more general language of arithmetic circuit satisfiability which
we recall formally below. Throughout this paper, an arithmetic circuit C : Fn × Fh → F` over a finite field
F consists of a collection of addition gates with unbounded fan-in and multiplication gates with fan-in 2.
Both types of gates can have unbounded fan-out. As noted in [BCI+13], Boolean circuit satisfiability can be
reduced to arithmetic circuit satisfiability over any finite field F with constant overhead.

9Typically, a Levin reduction also requires an efficiently-computable mapping h such that R′(f(x), z) = 1 if and only if
R(x, h(x, z)) = 1, but our constructions in this work will not require this additional property.
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Definition 2.4 (Arithmetic Circuit Satisfiability). Let F be a finite field. For an arithmetic circuit C : Fn×
Fh → Ft over F, the arithmetic circuit satisfiability problem is defined by the relation RC = {(x,w) ∈
Fn × Fh : C(x,w) = 0t}. We write LC to denote the corresponding language. For a family of arithmetic
circuits C = {C` : Fn(`)×Fh(`) → Ft(`)}`∈N, we writeRC and LC to denote the infinite relationRC =

⋃
`∈NRC`

and infinite language LC =
⋃
`∈N LC` . The special case of Boolean circuit satisfiability is the problem of

arithmetic circuit satisfiability over the binary field F = F2 (in this case, the output of C can be taken to be
a single bit (i.e., ` = 1) without loss of generality).

2.1 Linear PCPs

We begin by recalling the definition of linear PCPs (LPCP) from [BCI+13]. Our definition combines features
from a “fully linear PCP” introduced in [BBC+19] with the traditional notion of a linear PCP. First, recall
that in a fully linear PCP, the verifier does not have direct access to the statement x ∈ Fn and instead is
given linear query access to the vector [π,x] that includes the proof π together with the statement x. To
simplify the definition (and still capture existing constructions of linear PCPs), in a k-query linear PCP, we
allow the verifier to make a single “free” linear query to the statement x and up to k linear queries to the
proof vector π. We give our definition below:

Definition 2.5 (Linear PCP [BCI+13, BBC+19, adapted]). Let R : Fn×Fh → {0, 1} be a binary relation10

(with associated language L) over a finite field F. A k-query linear PCP for R with query length ` and
soundness error ε is a tuple of algorithms ΠLPCP = (QLPCP,PLPCP,DLPCP) with the following properties:

� The verifier’s query algorithm QLPCP outputs a query qinp ∈ Fn, a query matrix Q ∈ F`×k, and a
verification state st. We can also consider an input-dependent linear PCP where the query algorithm
also takes as input a statement x ∈ Fn.

� The prover algorithm PLPCP takes a statement x ∈ Fn and a witness w ∈ Fh as input and outputs a
proof π ∈ F`.

� The verifier’s decision algorithm DLPCP takes as input the verification state st, an input-dependent
response ainp ∈ F, and a vector of responses a ∈ Fk, and outputs a bit b ∈ {0, 1}.

In addition, ΠLPCP should satisfy the following properties:

� Completeness: For all x ∈ Fn and w ∈ Fh where R(x,w) = 1,

Pr[DLPCP(st,qT
inpx,Q

Tπ) = 1 | (st,qinp,Q)← QLPCP,π ← PLPCP(x,w)] = 1

� Soundness: For every x /∈ L and every π∗ ∈ F`, δ∗ ∈ Fk,

Pr[DLPCP(st,qT
inpx,Q

Tπ∗ + δ∗) = 1 | (st,qinp,Q)← QLPCP] ≤ ε.

We refer to ε as the soundness error.

� δ-Honest-verifier zero-knowledge (δ-HVZK): There exists an efficient simulator SLPCP such that
for all x ∈ L, the following distributions are δ-close (i.e., their statistical distance is at most δ):

{SLPCP(x)} and

{
(st,qinp,Q,q

T
inpx,Q

Tπ)

∣∣∣∣ (st,qinp,Q)← QLPCP;
π ← PLPCP(x,w)

}
.

10We can also define integer linear PCPs for an (infinite) family of relations R =
⋃
κ∈N Rκ. In this case, the inputs to the query-

generation and proving algorithms would additionally take the relation index 1κ as input, and the parameters n, h, k, `, B, ε
can all be functions of κ.
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If these two distributions are identically distributed, we say that LPCP satisfies perfect honest-verifier
zero-knowledge.11

Definition 2.6 (Strong Soundness [BCI+13]). A k-query linear PCP ΠLPCP = (QLPCP,PLPCP,DLPCP) satisfies
ε-strong soundness if it has soundness error at most ε, and moreover, for every input x ∈ Fn and every affine
function π∗ ∈ F`, δ∗ ∈ Fk, either

Pr[DLPCP(st,qT
inpx,Q

Tπ∗ + δ∗) = 1 | (st,qinp,Q)← QLPCP] ≤ ε,

or
Pr[DLPCP(st,qT

inpx,Q
Tπ∗ + δ∗) = 1 | (st,qinp,Q)← QLPCP] = 1.

Definition 2.7 (Knowledge Soundness). A k-query linear PCP ΠLPCP = (QLPCP,PLPCP,DLPCP) for a relation
R over a finite field F satisfies ε-knowledge soundness if there exists a knowledge extractor E such that for
every affine function π∗ ∈ F`, δ∗ ∈ Fk, if

Pr[DLPCP(st,qT
inpx,Q

Tπ∗ + δ∗) = 1 | (st,qinp,Q)← QLPCP] ≥ ε,

then E〈π∗,·〉+δ∗(x) outputs w such that (x,w) ∈ R.

Definition 2.8 (Algebraic Degree of Verifier). We say that the algebraic degree of a linear PCP ΠLPCP =
(QLPCP,PLPCP,DLPCP) is d if the verifier’s decision algorithm DLPCP can be computed by a multivariate
polynomial (over F) of total degree d in its inputs.

3 1-Query Linear PCPs via Packing

In this section, we begin by introducing the notion of a bounded linear PCP over the finite field Fp. Through-
out this section, we will view elements x ∈ Fp as both field elements over Fp as well as integers in the interval
[−p/2, p/2]. We first show in Construction 3.4 how to pack k-query bounded linear PCPs into a 1-query
linear PCP. In Appendix B, we describe how to construct a 2-query linear PCP based on the Hadamard
linear PCP [ALM+98, IKO07]. In conjunction with our query-packing transformation, we obtain 1-query
linear PCPs for NP. Then, by invoking the compiler from [BCI+13] (see Appendix A.1) with the ElGamal
encryption scheme, we obtain a SNARG where the proof consists of a single ElGamal ciphertext (i.e., two
group elements). Then, in Sections 3.2 and 3.3, we show how to optimize the concrete efficiency of our
ElGamal-based SNARG (by leveraging structural properties of our 1-query linear PCP).

Definition 3.1 (Bounded Linear PCP). A k-query linear PCP ΠLPCP = (QLPCP,PLPCP,DLPCP) for a relation
R : Fnp × Fhp → {0, 1} over a finite field Fp is bounded with respect to bound functions b1, . . . , bk : N → N if
QLPCP and PLPCP take as input an additional bound parameter τ ∈ N and for any x,w where R(x,w) = 1,
we have for all i ∈ [k],

Pr[qT
i π ∈ [−bi(τ), bi(τ)] | (st,qinp,Q)← QLPCP(τ),π ← PLPCP(τ,x,w)] = 1, (3.1)

where qi denotes the ith column on Q and the inner product is computed over the integers. We say that ΠLPCP

is bounded with respect to bound functions b1, . . . , bk with probability ε if Eq. (3.1) holds with probability
ε. Moreover, when defining δ-HVZK for bounded linear PCPs, we additionally provide the bound parameter
τ as input to QLPCP and PLPCP in the real distribution and the simulator SLPCP in the simulated distribution
(in addition to the input x). In this case, we also allow the bound function to depend on both the bound
parameter τ as well as the zero-knowledge parameter δ.

11We can consider a stronger notion of zero-knowledge where the simulator does not have access to the statement x. This is
the setting considered in fully linear PCPs [BBC+19] and has applications to constructing proofs on committed values or
secret-shared values. This stronger notion can also be relevant in our setting where a verifier is checking proofs from multiple
provers (who may each hold a secret share of a distributed database), and the goal is to minimize proof size or verifier
complexity.
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Remark 3.2 (Responses that Exceed the Bound). A bounded LPCP has the guarantee that the responses
computed using an honestly-generated proof will be bounded. However, this property does not extend to
responses computed with respect to a maliciously-generated proof. In a bounded LPCP, the verifier has the
option to explicitly enforce the bound and only accept proofs where the responses fall within the prescribed
bound, or it can choose not to enforce the bound. This choice does not affect completeness, soundness or
honest-verifier zero-knowledge, but it does affect strong soundness. Namely, for true statements, there can be
responses that the verifier accepts and yet, the values fall outside the bound (these responses correspond to
proof strategies that are never output by the honest algorithm). Moreover, whether the responses computed
by such strategies lie within the bound or not can be correlated with the verifier’s queries. As such, a verifier
that does not enforce the bound might satisfy strong soundness whereas a verifier that does enforce the
bound may fail to satisfy strong soundness. In our linear PCP packing construction (Construction 3.4),
strong soundness is only preserved if we assume that the underlying bounded linear PCPs satisfy strong
soundness for verifiers that enforce the bound. For this reason, we define this requirement explicitly in
Definition 3.3.

Definition 3.3 (Strong Soundness for Bounded LPCPs). A k-query bounded linear PCP ΠLPCP = (QLPCP,
PLPCP,DLPCP) with bound functions b1, . . . , bk satisfies ε-strong soundness if it satisfies the usual notion of
ε-strong soundness (Definition 2.6) and DLPCP(st, ainp,a) outputs 1 only if ai ∈ [−bi(τ), bi(τ)] for i ∈ [k]
when (st,qinp,Q)← QLPCP(τ).

Construction 3.4 (Bounded Linear PCP Packing). Let Π′LPCP = (Q′LPCP,P ′LPCP,D′LPCP) be a k-query
bounded LPCP for a binary relation R : Fnp × Fhp → {0, 1} over Fp with bound functions b′1, . . . , b

′
k : N → N

and soundness error ε′. We will assume that D′LPCP strictly enforces the bound on the responses (namely,
given a set of responses a1, . . . , ak, D′LPCP accepts only if ai ∈ [−b′i(τ), b′i(τ)] for each i ∈ [k]; see Remark 3.2
and Definition 3.3 for more discussion). We construct a 1-query bounded LPCP ΠLPCP = (QLPCP,PLPCP,
DLPCP) as follows:

� QLPCP(τ): On input the bound parameter τ , QLPCP proceeds as follows:

1. Run (st′,q′inp,Q
′)← Q′LPCP(τ). Set qinp = q′inp.

2. Define Bmin = mini∈[k] b
′
i(τ), Bmax = maxi∈[k] b

′
i(τ), and Bmul =

∏
i∈[k] b

′
i(τ). Set r1 = 1 and

sample r2, . . . , rk
r←
[
4Bmax + 1, Bmul · 2k+2/ε′

]
. Without loss of generality, we will assume that

Bmin = b′k(τ).

3. Compute st← (st′, b′1(τ), . . . , b′k(τ), r1, . . . , rk), and compute the query vector q ∈ F`p as

q =
∑
i∈[k]

q′i

( ∏
j∈[i]

rj

)
∈ F`p,

where q′1, . . . ,q
′
k ∈ Z` denote the k columns of Q′.

Output (st,qinp,q).

� PLPCP(τ,x,w): On input a statement x ∈ Fnp and a witness w ∈ Fhp , output the proof π ←
PLPCP(τ,x,w).

� DLPCP(st, ainp, a): On input the state st = (st′, b′1, . . . , b
′
k, r1, . . . , rk), an input-dependent response

ainp ∈ Fp, and a response a ∈ Fp, compute a′1, . . . , a
′
k ∈ Fp so that a =

∑
i∈[k] a

′
i

∏
j∈[i] rj and each a′i

satisfies a′i ∈ [−b′i, b′i]. This can be done as follows:

– For each i = k, k − 1, . . . , 1, compute a′i ← ba/
∏
j∈[i] rjc and update a← a− a′i ·

∏
j∈[i] rj , where

all of these operations happen over the integers (namely, the algorithm interprets the values a
and a′1, . . . , a

′
k as integers in the interval [−p/2, p/2]).
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If the above procedure does not produce a′1, . . . , a
′
k ∈ Fp satisfying the above requirements, output 0.

Otherwise, output D′LPCP(st′, ainp, (a
′
1, . . . , a

′
k)).

Theorem 3.5 (Bounded). If Π′LPCP is bounded with respect to bound functions b′1, . . . , b
′
k and Bmul ·2k+2/ε′ ≤

p/2, then ΠLPCP in Construction 3.4 is bounded with respect to the bound

b(τ) = 2 ·Bmin · (Bmul · 2k+2/ε)k−1.

Proof. Take any (x,w) ∈ R, and let (st′,q′inp,Q
′) ← Q′LPCP(τ), π ← PLPCP(τ,x,w). By construction,

q =
∑
i∈[k] q

′
i

(∏
j∈[i] rj

)
where q′1, . . . ,q

′
k are the columns of Q′. Then,

qTπ =
∑
i∈[k]

(q′i)
Tπ

∏
j∈[i]

rj

 =
∑
i∈[k]

a′i ∏
j∈[i]

rj

 ∈ Fp. (3.2)

Since Π′LPCP is bounded, a′i = (q′i)
Tπ ∈ [−b′i, b′i)] for all i ∈ [k]. Consider Eq. (3.2) over the integers, where

we view the values a′1, . . . , a
′
k and r1, . . . , rk as integers in the range [−p/2, p/2]. The bound on a′i means

that each |a′i| ≤ b′i for all i ∈ [k]. Next, we note that by assumption, r1, . . . , rk ≤ Bmul · 2k+2/ε′ < p/2. Thus,
over the integers, we now have

|qTπ| ≤
∑
i∈[k]

|a′i|∏
j∈[i]

rj

 ≤∑
i∈[k]

b′i ∏
j∈[i]

rj

 ∈ Z. (3.3)

We now show that over the integers, for all i ∈ [k],∑
t∈[i]

b′t
∏
j∈[t]

rj <
1

2

∏
j∈[i+1]

rj . (3.4)

We proceed inductively, Certainly this holds when i = 1 since r1 = 1 and r2 ≥ 4Bmax + 1 > 4b′1. Then,∑
t∈[i+1]

b′t
∏
j∈[t]

rj =

(∑
t∈[i]

b′t
∏
j∈[t]

rj

)
+

(
b′i+1

∏
j∈[i+1]

rj

)
<

( ∏
j∈[i+1]

rj

)
+

(
b′i+1

∏
j∈[i+1]

rj

)
= (b′i+1 + 1)

∏
j∈[i+1]

rj ≤
1

2

∏
j∈[i+2]

rj .

since ri+2 ≥ 4Bmax + 1 ≥ 4(b′i+1 + 1). Applying this to Eq. (3.3), we have that

|qTπ| ≤
∑
i∈[k]

b′i ∏
j∈[i]

rj

 ≤ ∑
i∈[k−1]

b′i ∏
j∈[i]

rj

+ b′k
∏
j∈[k]

rj ≤
1

2

∏
j∈[k]

rj + b′k
∏
j∈[k]

rj

≤ 2Bmin

∏
j∈[k]

rj ≤ 2Bmin

(
Bmul · 2k+2/ε′

)k−1
,

since r1 = 1, Bmin = b′k, and r2, . . . , rk ≤ Bmul · 2k+2/ε′. Since this relation holds over the integers, the claim
holds.

Theorem 3.6 (Completeness). If Π′LPCP is complete and bounded with respect to functions b′1, . . . , b
′
k and

2Bmin ·
(
Bmul2

k+2/ε
)k−1 ≤ |Fp|

2
=
p

2
,

then ΠLPCP from Construction 3.4 is complete.
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Proof. Take any (x,w) ∈ R, and let (st′,q′inp,q
′) ← Q′LPCP(τ), π ← PLPCP(τ,x,w). By construction,

q =
∑
i∈[k] q

′
i

(∏
j∈[i] rj

)
where q′1, . . . ,q

′
k are the columns of Q′ output by Q′LPCP. By construction,

qTπ =
∑
i∈[k]

(q′i)
Tπ

∏
j∈[i]

rj

 =
∑
i∈[k]

a′i ∏
j∈[i]

rj

 .
It suffices to argue that the decision algorithm correctly recover the values a′i = (q′i)

Tπ from a. The claim
then follows from completeness of Π′LPCP. As in the proof of Theorem 3.5, we view the values a, a′1, . . . , a

′
k,

and r1, . . . , rk as integers in the range [−p/2, p/2]. Then, it suffices to show for i ∈ [k],

∏
j∈[i]

rj > 2 ·

∣∣∣∣∣ ∑
t∈[i−1]

a′t
∏
j∈[t]

rj

∣∣∣∣∣ = 2 ·
∑

t∈[i−1]

|a′t|
∏
j∈[t]

rj ,

since
∏
i∈[k] ri < p/2. Since Π′LPCP is bounded, |a′t| ≤ b′t for all t ∈ [k]. This means that

∑
t∈[i−1]

|a′t|
∏
j∈[t]

rj ≤
∑

t∈[i−1]

b′t
∏
j∈[t]

rj <
1

2

∏
j∈[i]

rj ,

by Eq. (3.4), which was shown to hold for these parameters in the proof of Theorem 3.5. Thus, the verification
algorithm correctly recovers the values of a′i = (q′i)

Tπ over the integers, which means that a′i = (q′i)
Tπ ∈ Fp.

The claim then follows from completeness of Π′LPCP.

Theorem 3.7 (Soundness). If Π′LPCP has soundness error (resp., strong soundness error) ε′ and is bounded
with respect to functions b′1, . . . , b

′
k, then Construction 3.4 has soundness error (resp., strong soundness error)

ε = (k + 1)/2 · ε′.

Proof. Take any statement x /∈ L and consider an affine function π∗ ∈ F`p and δ∗ ∈ Fp. Let (st,qinp,q) ←
QLPCP(τ), where st = (st′, b′1, . . . , b

′
k, r1, . . . , rk). Let ainp = qT

inpx ∈ Fp, a∗ ← qTπ∗ + δ∗ ∈ Fp and let

Q′ ∈ F`×kp be the queries sampled by Q′LPCP(τ) (and which are packed into q). Let q′1, . . . ,q
′
k ∈ F`p be the

columns of Q′. Suppose that DLPCP(st, ainp, a
∗) outputs 1. This means that the verifier was able to extract

coefficients a′ = (a′1, . . . , a
′
k) from a such that DLPCP(st′, ainp,a

′) outputs 1, and moreover a′i ∈ [−b′i, b′i] for
each i ∈ [k]. This means that

δ∗ +
∑
i∈[k]

(q′i)
Tπ∗

∏
j∈[i]

rj =
∑
i∈[k]

a′i
∏
j∈[i]

rj ∈ Fp,

or equivalently, using the fact that r1 = 1,

f(r2, . . . , rk) = (a′1 − (q′1)Tπ∗ − δ∗) +

k∑
i=2

(a′i − (q′i)
Tπ∗)

i∏
j=2

rj = 0 ∈ Fp. (3.5)

We consider two possibilities:

� Suppose that a′1 = (q′1)Tπ∗ + δ∗ and a′i = (q′i)
Tπ∗ for i > 1. In this case, the adversary’s response to

Π′LPCP is computed according to the affine strategy π∗ and δ∗ = [δ∗, 0, 0, . . . , 0] ∈ Fkp. By soundness of
the Π′LPCP, the probability that DLPCP(st′,x,a′) accepts is at most ε′ in this case.

� Suppose that either a′1 6= (q′1)Tπ∗+δ∗ or a′i 6= (q′i)
Tπ∗ for some i > 1. This means that Eq. (3.5) is not

the identically-zero polynomial in the variables r2, . . . , rk. Define the polynomial fa′1,...,a′k(r2, . . . , rk)
to be the polynomial from Eq. (3.5) for a fixed choice of a′1, . . . , a

′
k ∈ Fp. This is a polynomial of total
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degree at k − 1. By the Schwartz-Zippel lemma, the probability that fa′1,...,a′k(r2, . . . , rk) = 0 over the
random choice of r2, . . . rk is at most

Pr[fa′1,...,a′k(r2, . . . , rk) = 0 | r2, . . . , rk
r← [4Bmax + 1, 2k+2 ·Bmul/ε

′]] ≤ k − 1

2k+2 ·Bmul/ε′ − 4Bmax
.

By a union bound, the probability that there exists a′1 ∈ [−b′1, b′1], . . . , a′k ∈ [−b′k, b′k] such that Eq. (3.5)
holds is at most

Pr[f(r2, . . . , rk) = 0 | r2, . . . , rk
r← [4Bmax + 1, 2k+2 ·Bmul/ε

′]] ≤
(k − 1) ·

∏
i∈[k](2b

′
i)
k

2k+2 ·Bmul/ε′ − 4Bmax

≤ 2kBmul · (k − 1)

2k+2 ·Bmul/(2ε′)
=
k − 1

2
· ε′,

where the last inequality holds as long as k ≥ 2, ε′ < 1 and b′i ≥ 9 for all i ∈ [k]. In this case,
4Bmax ≤ 2k+2Bmul/(2ε

′).

We conclude that the soundness error is bounded by ε = ε′ + (k − 1)/2 · ε′ = (k + 1)/2 · ε′.

Strong soundness. The proof of strong soundness follows similarly to the argument above (provided that
Π′LPCP satisfies strong soundness for bounded LPCPs as defined in Definition 3.3). To see this, take any
statement x ∈ Fnp and consider any affine function π∗ ∈ F`p and δ∗ ∈ Fp. We consider the probability that
the verifier accepts. As before, if the verifier accepts, then Eq. (3.5) holds. We can consider the same two
cases as above.

� Suppose that a′1 = (q′1)Tπ∗ + δ∗ and a′i = (q′i)
Tπ∗ for i > 1. This is a valid affine strategy for Π′LPCP,

so by strong soundness of Π′LPCP, the verifier here either accepts with probability 1 or with probability
at most ε′.

� Suppose that either a′1 6= (q′1)Tπ∗ + δ∗ or a′i 6= (q′i)
Tπ∗ for some i > 1. By the above argument, the

probability that the verifier accepts is at most ε = (k − 1)/2 · ε′.

We conclude that Construction 3.4 has strong soundness error ε.

Remark 3.8 (Knowledge Soundness). We further note that if the underlying linear PCP Π′LPCP in Construc-
tion 3.4 satisfies knowledge soundness (Definition 2.7), then the packed linear PCP from Construction 3.4
also provides knowledge soundness. Moreover, the extractor E for the packed linear PCP ΠLPCP simply runs
the extractor for the underlying linear PCP Π′LPCP. This follows from the fact that in the proof of Theo-
rem 3.7, the verifier only accepts if the adversary’s proof maps onto a valid strategy π∗, δ∗ for ΠLPCP′ . If
not, then the verifier accepts with probability at most ε. This property will allow us to construct arguments
of knowledge via the [BCI+13] compiler.

Theorem 3.9 (Honest-Verifier Zero Knowledge). If Π′LPCP satisfies δ-HVZK then ΠLPCP in Construction 3.4
also satisfies δ-HVZK

Proof. Let S ′LPCP be the δ-HVZK simulator for Π′LPCP. We use S ′LPCP to construct a simulator SLPCP for ΠLPCP

as follows:

1. On inputs x ∈ Fnp and τ , run (st′,q′inp,Q
′, a′inp,a

′)← S ′LPCP(x, τ) where a′inp ∈ Fp and a′ ∈ Fkp.

2. Set r1 = 1, sample r2, . . . , rk
r←
[
4Bmax + 1, Bmul · 2k+2/ε′

]
.

3. Compute the packed query q←
∑
i∈[k] q

′
i

(∏
j∈[i] rj

)
, where q′i denotes the ith column of Q′.

4. Compute the packed response a←
∑
i∈[k] a

′
i

(∏
j∈[i] rj

)
.
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5. Let st← (st′, b′1(τ), . . . , b′k(τ), r1, . . . , rk) and output the tuple (st,q′inp,q, a
′
inp, a).

We now show that for all x ∈ L, the real distribution and the simulated distributions are δ-close. This
follows from δ-HVZK of Π′LPCP. Namely, take any (x,w) ∈ R, and suppose we apply the above simulation
procedure except we sample (st′,q′inp,Q

′) ← Q′LPCP(τ), π′ ← P ′LPCP(τ,x,w), and set a′inp ← (q′inp)
Tx and

a′ ← (Q′)Tπ′. By construction of ΠLPCP, the resulting tuple (st,q′inp,q, a
′
inp, a) is distributed identically to

the real distribution where the components are generated using QLPCP and PLPCP. Next, we replace the tuple
(st,q′inp,Q

′, a′inp,a
′) generated by Q′LPCP and P ′LPCP with the output of S ′LPCP(x, τ). By δ-HVZK of Π′LPCP,

these two distributions are δ-close. But this is precisely the distribution output by SLPCP, and the claim
follows by a standard hybrid argument.

Corollary 3.10 (Linear PCP Packing). Let Π′LPCP be a k-query bounded LPCP over Fp for a binary relation
R with bound functions b′1, . . . , b

′
k, soundness error (resp., strong soundness error) ε′, and which satisfies

δ-HVZK. Let B′min = mini∈[k] b
′
i, B

′
mul =

∏
i∈[k] b

′
i, and B = 2B′min

(
B′mul2

k+2/ε
)k−1

. If p > 2B, then there

exists a 1-query bounded LPCP over Fp for R with bound B, soundness error (resp., strong soundness error)
(k + 1)/2ε′, and which satisfies δ-HVZK.

3.1 Constructing 1-Query Bounded Linear PCPs

As noted in [BCI+13], a simple extension of the Hadamard PCP from [ALM+98, IKO07] to arbitrary finite
fields F yields a 3-query linear PCP for arithmetic circuit satisfiability over F. We review the construction
in Appendix B.1. There, we make two additional observations:

� The 3-query Hadamard linear PCP decision procedure is in fact linear in two of the responses, so we
can combine two of the queries together to obtain a 2-query linear PCP over F (see Construction B.1).

� For an arithmetic circuit C of size s over a finite field F, an (honest) proof π for a statement-instance
pair (x,w) consists of a collection of wire labels z ∈ Fs corresponding to C(x,w), together with the
pairwise products z⊗z. If we are working with Boolean circuits (or more generally, arithmetic circuits
over the integers where the wire labels are bounded; see Remark 3.16), then the resulting linear PCP
is in fact a bounded linear PCP (see Construction B.8). We state this formally below.

Theorem 3.11 (2-Query Bounded LPCP). Let C : {0, 1}n × {0, 1}h → {0, 1} be a Boolean circuit of size
s, and let Fp be a finite field. Let τ ∈ N be a bound parameter. There exists a 2-query bounded linear PCP
ΠLPCP over Fp with algebraic degree 2 for the relation RC with perfect completeness, strong soundness error
2/τ , and query length (s2 + 3s)/2. Moreover,

� ΠLPCP is bounded with respect to bound functions b1(τ) = sτ/2 and b2(τ) = 2(b1(τ))2; and

� for any ε > 0, ΠLPCP is bounded with respect to functions b′1(τ) = τ
√
s/2 · ln(2/ε) and b′2(τ) = 2(b′1(τ))2

with probability 1− ε.

Furthermore, the query-generation algorithm QLPCP and the prover algorithm PLPCP runs in time O(s2) ·
polylog(p). The decision algorithm DLPCP runs in time polylog(p).12

The construction in Theorem 3.11 is a simple adaptation of the basic Hadamard linear PCP and we provide
the description (Construction B.8) and analysis in Appendix B.2.

12Recall that in our setting, the verification algorithm takes as input a linear function of the statement x ∈ {0, 1}n, and not
the statement x itself as input.
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Bounded LPCPs with zero-knowledge. The bounded linear PCP in Theorem 3.11 is not zero-knowledge.
However, as noted in [BCI+13], it is straightforward to augment the Hadamard linear PCP to provide honest-
verifier zero knowledge (by introducing a “dummy wire;” see Remark B.5). We can leverage the same idea
in our setting to obtain a bounded linear PCP that provides δ-honest-verifier zero knowledge. We state
the main theorem here, but refer to Appendix B.3 for the full description (Construction B.13) and analysis.
Note that this construction does not provide strong soundness (Remark B.17).

Theorem 3.12 (2-Query δ-HVZK Bounded LPCP). Let C : {0, 1}n×{0, 1}h → {0, 1} be a Boolean circuit of
size s, and let Fp be a finite field. Let τ ∈ N be a bound parameter and δ > 0 be a zero-knowledge parameter.
There exists a 2-query bounded linear PCP ΠLPCP with algebraic degree 2 over Fp for the relation RC with
perfect completeness, soundness error 2/τ , δ-honest-verifier zero knowledge, and query length (s2 + 3s)/2.
Moreover,

� ΠLPCP is bounded with respect to bound functions b1(τ) = sτ/2 + 2τ
√
s/2 ln(4/δ)/δ and b2(τ) =

2(b1(τ))2.

� for any ε > 0, ΠLPCP is bounded with respect to b′1(τ) = τ
√
s/2
(√

ln(2/ε) + 2/δ
√

ln(4/δ)
)

and b′2(τ) =
2(b1(τ))2 with probability at least 1− ε.

Furthermore, the query-generation algorithm QLPCP and the prover algorithm PLPCP runs in time O(s2) ·
polylog(p). The decision algorithm DLPCP can be implemented by an arithmetic circuit of size polylog(p).

Remark 3.13 (Comparison with Square Span Programs [DFGK14]). As described in [Gro16], one can also
construct a 2-query linear PCP (a “non-interactive linear proof (NILP)”) from the square span programs
of [DFGK14]. In particular, starting from a square span program, it is possible to construct a 2-query linear
PCP for arithmetic circuit satisfiability over a field F with query length is O(s) and soundness error O(s/|F|),
where s is the circuit size. Like the 3-query linear PCPs based on quadratic span programs [GGPR13], the
advantage here is that the query length is O(s) rather than O(s2) as in the Hadamard construction. However,
these linear PCPs are not bounded: the verifier’s query is constructed by computing the powers of a random
field element α ∈ F: α, α2, . . . , αs. As such, even if α is sampled from a bounded range, the absolute
magnitude of some of the components will be comparable to |F|. If we then consider the magnitude of the
responses computed over the integers, they will not lie in an interval smaller than |F|. It is not clear how to
apply our linear PCP packing transformation to linear PCPs based on square span programs or quadratic
span programs. It is an interesting open question to construct a 1-query linear PCP based on square span
programs or quadratic span programs (or more generally, any 1-query linear PCP with query length O(s))
that satisfies strong soundness.

1-query bounded LPCPs. We can now combine our 2-query bounded linear PCPs (Theorems 3.11
and 3.12) with our linear PCP packing construction (Corollary 3.10) to obtain a 1-query linear PCP for
Boolean circuit satisfiability. We summarize our construction in the corollary below:

Corollary 3.14 (1-Query Bounded LPCP). Let C : {0, 1}n×{0, 1}h → {0, 1} be a Boolean circuit of size s,
and let Fp be a finite field. Let τ ∈ N be a bound parameter and δ > 0 be a zero-knowledge parameter. There
exist 1-query bounded linear PCPs over Fp for RC with the following properties:

� Perfect completeness, strong soundness error 3/τ , query length (s2 + 3s)/2, and bound function b(τ) =
4s4τ5/3, provided that p > 2b(τ); and

� Perfect completeness, soundness error 3/τ , query length (s2 + 3s)/2, δ-honest-verifier zero knowledge,
and bound function b(τ, δ) = 64τ(sτ/2 + 2τ

√
s/2 ln(4/δ)/δ)4/3, provided that p > 2b(τ, δ).

Additionally, the query-generation algorithm QLPCP and the prover algorithm PLPCP runs in time O(s2) ·
polylog(p). The verifier’s decision algorithm DLPCP runs in time polylog(p).
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Remark 3.15 (Field Size Bound in Corollary 3.14). The packing construction from Corollary 3.14 imposes a
lower bound on the field size. If we are working over a standard 256-bit group, this translates to a constraint
on the circuit size, soundness error, and statistical zero-knowledge parameter that we are able to support.
However in concrete settings, these bounds are unlikely to be the bottleneck. For instance, if log p ≈ 256,
we can support circuits with size 225 while achieving a soundness error of 2−28 and providing δ-HVZK for
δ = 10−3. These values are beyond the range of parameters for which the resulting SNARG construction is
competitive (see Table 2).

Remark 3.16 (Arithmetic Circuits over the Integers). As noted in Construction B.8, our basic constructions
naturally extend to support general arithmetic circuits over the integers, provided that each of the wire values
are small and moreover, the output wire of each gate in the circuit can be expressed as a quadratic polynomial
in the input wires to the gate. This includes gates that can take many input values, as long as the output
value is bounded and corresponds to a quadratic function of the input values. For example, we can consider
circuits that have large fan-in “inner product” gates which compute an inner product between the two input
vectors. The size of the resulting linear PCP then scales quadratically with the number of gates (and input
wires) in the circuit. By compressing large computations like inner products into a single gate operation, the
resulting linear PCP can be substantially shorter than that obtained by first translating the computation
into an equivalent Boolean circuit and constructing the linear PCP from the circuit. Thus, for structured
computations like matrix multiplication, it is possible to significantly reduce the linear PCP size by relying
on these “Hadamard-friendly” gates. It is an interesting challenge to construct other Hadamard-friendly
gadgets. For instance, if we can construct a cryptographic hash function from such gadgets, that would give
an efficient linear PCP, and thus, a succinct argument, for verifying the output of a hash function.

Remark 3.17 (Strong Soundness for 1-Query Linear PCPs). An appealing property of the 1-query lin-
ear PCP from Corollary 3.14 (without zero-knowledge) is that it provides strong soundness. As shown
in [BCI+13], linear PCPs with strong soundness are a useful ingredient for constructing multi-theorem suc-
cinct arguments. Our construction in Corollary 3.14 is the first 1-query linear PCP that provides strong
soundness. In contrast, the linear PCP based on classic PCPs from [BCI+13] cannot provide strong sound-
ness, and as they show, any linear PCP constructed by packing together queries to a classic PCP cannot
satisfy strong soundness.

3.2 SNARGs based on ElGamal

In this section, we describe how to efficiently compile our 1-query bounded linear PCP from Corollary 3.14
to obtain a designated-verifier SNARG in the preprocessing model where the proof size consists of 2 group
elements and where the verification complexity is sublinear in the cost of the classic NP verifier. While it is
possible to directly invoke the [BCI+13] compiler on our 1-query bounded linear PCP together with ElGamal
encryption, the verification complexity of the resulting scheme is quadratic in the size of the classic NP verifier.
This is because the additively-homomorphic version of ElGamal encryption scheme (see Construction C.4)
encodes the messages in the exponent, and decryption requires solving a discrete log. When the responses
are bounded in an interval of size B, this can be done in time O(

√
B) using generic algorithms (e.g., [Pol78]).

While a bounded linear PCP seems like a natural choice to use in conjunction with ElGamal, the bounds
in Corollary 3.14 scale with s4, where s is the circuit size of the classic NP verifier. Instantiating with
ElGamal then yields an unacceptable verification complexity that is quadratic in the circuit size. In this
section, we will leverage the structure of our packed 2-query bounded linear PCP to obtain an asymptotically-
faster (worst-case verification complexity that scales with Õ(

√
s)) and concretely-efficient designated-verifier

SNARG based on ElGamal. Compared with a direct instantiation of the [BCI+13] compiler with ElGamal
encryption, our proofs are either 4 times more succinct (2 group elements vs. 8 group elements) or much
more concretely efficient (relying on linear PCPs rather than classic PCPs).

The ElGamal instantiation. Before describing how we optimize the verification procedure for our
ElGamal-based SNARG, we begin with an explicit description of the construction. We assume a 1-query
bounded linear PCP, in which case we obtain a direct construction from any linear-only encryption scheme:
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Construction 3.18 (SNARG based on ElGamal). Let C : {0, 1}n × {0, 1}h → {0, 1} be a Boolean circuit
of size s. Let GroupGen be a prime-order group generator (Definition 2.3) that outputs a group G of prime
order p. Let ΠLPCP = (QLPCP,PLPCP,DLPCP) be a 1-query bounded linear PCP with bound B = B(τ) and
bound parameter τ for the relation RC over Fp. We construct a SNARG ΠSNARG = (SSNARG,PSNARG,VSNARG)

� SSNARG(1λ): On input the security parameter λ, the setup algorithm samples a group description
(G, p, g)← GroupGen(1λ) and a linear PCP query (st′,qinp,q)← QLPCP(τ) ∈ F`p. The setup algorithm

samples a secret key α
r← Fp, and computes the ElGamal public key h ← gα. The setup algorithm

samples r
r← F`p, and computes the ciphertexts (gr, hrgq), where for a vector r, we write gr to denote

the vector of group elements (gr1 , . . . , gr`). The setup algorithm outputs the common reference string
crs and verification state st:

crs =
(
(G, p, g), h, (gr, hrgq), τ

)
and st = (st′, α).

� PSNARG(crs, x, w): On input a common reference string crs =
(
(G, p, g), h, (gr, gs), τ

)
, a statement

x ∈ {0, 1}`, and a witness w ∈ {0, 1}h, the prover algorithm computes a proof π ← PLPCP(τ, x, w) ∈ F`p.
It computes the proof as π = (gr

Tπ, gs
Tπ).

� VSNARG(st, x, π): On input the verification state st = (st′,qinp, α), the statement x ∈ {0, 1}n, and a
proof π = (g1, g2), the verifier computes h′ = g2/g

α
1 , and checks if there exists a ∈ [−B,B] such that

h′ = ga. It outputs DLPCP(st′,qT
inpx, a).

Assuming that the ElGamal encryption scheme satisfies linear targeted malleability with respect to the target
set [−B,B] (Definition A.6), then Construction 3.18 is a designated-verifier SNARG in the preprocessing
model where the proof size consists of exactly 2 group elements (via Theorem A.9). The bottleneck is the
expensive verification procedure. As stated, the verification algorithm has to compute the discrete log of
h′ = ga where a is the linear PCP response. This can be computed in time Õ(

√
B), which for the linear

PCP from Corollary 3.14, is quadratic in the circuit size s.

Optimizing the verification procedure. We now describe how to more efficiently implement the verifi-
cation procedure in Construction 3.18 to obtain a SNARG whose worst-case verification complexity is O(s).
Moreover, if we allow for a negligible completeness error (as opposed to perfect completeness), we give a pro-

cedure whose worst-case verification complexity is Õ(
√
s). Our optimization will rely on specific properties

of the linear PCP from Corollary 3.14. Namely, the 1-query linear PCP from Corollary 3.14 was obtained
by packing together a 2-query linear PCP (Theorems 3.11 and 3.12). For simplicity, we will describe our
optimization for the construction based on Theorem 3.11 (Construction B.8), but the same techniques apply
to the construction from Theorem 3.12 (Construction B.13).

� Construction B.8 has the property that the verifier accepts a response (a1, a2) ∈ F2
p only if a2

1 + a2 =
ainp + uC , where ainp, uC ∈ Fp are scalars that are known to the verifier.

� If q1,q2 ∈ F`p are the two queries the verifier makes in Construction B.8, then the packed query in
Construction 3.4 satisfies q = q1 + r · q2 for some r ∈ Fp known to the verifier. This means that the
honest prover’s response satisfies a = qTπ = qT

1π + r · qT
2π = a1 + r · a2.

� Finally, Construction B.8 has the property that for an accepting proof, the first response a1 satisfies
a1 ∈ [−b1(τ), b1(τ)] = [−sτ/2, sτ/2].

Equivalently, this means the linear PCP verifier in Construction B.8 accepts only if there exists a1 ∈
[−b1(τ), b1(τ)] such that the following two relations hold:

a2 = ainp + uC − a2
1 and a = a1 + r · a2,
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or equivalently, if there exists a1 ∈ [−b1(τ), b1(τ)] such that

a = a1 + r · (ainp + uC − a2
1).

In the SNARG from Construction 3.18, the verifier first computes ga. Now, instead of recovering a by solving
discrete log, the verifier instead checks whether there exists a1 ∈ [−b1(τ), b1(τ)] where

ga = ga1+r(ainp+uC−a21). (3.6)

This can be done by performing a brute force search over all of the possible 2b1(τ) values for a1 and seeing
if Eq. (3.6) holds. We can also rewrite Eq. (3.6) as checking whether there exists a1 where

ga · g−r(ainp+uC) = ga1−ra
2
1 . (3.7)

Observe now that the right-hand side of the expression depends only on the value of a1 and r, and in
particular, is independent of the statement. Since r is sampled by the setup algorithm SSNARG, the verifier can
actually precompute a table of values ga1−ra

2
1 for each possible value of a1. Then, to verify a proof π = (g1, g2),

the verifier computes u = gag−r(ainp+uC), which requires a constant number of group operations, and finally,
checks to see whether u is contained in the table or not. This yields a substantially faster verification
procedure. Even without this optimization, we obtain a SNARG where the verification complexity is O(s).
We summarize this in the following corollary:

Corollary 3.19 (SNARG from ElGamal with Perfect Completeness). Let C : {0, 1}n × {0, 1}h → {0, 1} be
a Boolean circuit of size s. Let ε > 0 be a soundness parameter and δ > 0 be a zero-knowledge parameter.
Assuming the ElGamal encryption scheme (over a prime order group G of order p) satisfies linear targeted
malleability with respect to a target message space [−B,B] for B = poly(s, 1/ε, 1/δ), there exist a designated-
verifier SNARGs for RC with perfect completeness, non-adaptive soundness error ε, and proofs of size
2 log|G|. The CRS has size O(s2). The setup algorithm and prover run in time O(s2) and the verifier runs
in time O(s/ε). Moreover, the SNARG can be extended to satisfy δ-HVZK. In this case, the verifier runs in
time O(

√
s/ε · (

√
s+

√
log(1/δ)/δ)); the setup and prover complexity remain unchanged. All of the running

times are up to polylog(p) factors.

Sublinear verification. We can further reduce the verification complexity by having the verifier only
accept proofs where the first response a1 is contained in a much shorter interval. Instantiating Theorem 3.11
with any ε = λ−ω(1), we have that the bound b′1(τ) = Õ(τ

√
s) with probability 1− ε = 1− negl(λ). We now

modify the verification procedure VSNARG to only accept if there exists a1 ∈ [−b′1(τ), b′1(τ)] such that Eq. (3.7)
holds. Since the subset of proofs the verifier accepts is now a strict subset of the proofs it accepted in the
original scheme, (single-theorem) soundness is preserved. The trade-off is that the verifier may now reject
some honestly-generated proofs, but Theorem 3.11 says this can only happen with negligible probability over
the verifier’s randomness. This yields the following theorem:

Corollary 3.20 (SNARG from ElGamal with Sublinear Verification). Let C : {0, 1}n × {0, 1}h → {0, 1} be
a Boolean circuit of size s. Let ε > 0 be a soundness parameter and δ > 0 be a zero-knowledge parameter.
Assuming the ElGamal encryption scheme (over a prime order group G of order p) satisfies linear targeted
malleability with respect to a target message space [−B,B] for B = poly(s, 1/ε, 1/δ), there exists a designated-
verifier SNARG for RC with statistical completeness and non-adaptive soundness error ε, and proofs of size
2 log|G|. The CRS has size O(s2). The setup algorithm and prover run in time O(s2) and the verifier runs

in time Õ(
√
s/ε). Moreover, the SNARG can be extended to satisfy δ-HVZK. In this case, the verifier runs

in time Õ(
√
s log(1/δ)/(δε)); the setup and prover complexity remain unchanged. All of the running times

are up to polylog(p) factors.

A preprocessing variant. As mentioned above, the verification relation in Eq. (3.7) is very amenable
to preprocessing. Namely, the verifier can perform a one-time setup and precompute all of the accepting
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values of ga1−ra
2
1 and store them in a table. Applying the sublinear verification approach described above,

this will only require Õ(
√
s) space when verifying circuits of size s. In the online phase, to check a proof, the

verifier needs to perform a single ElGamal decryption, followed by computing the left-hand side of Eq. (3.7),
and finally, a single table lookup. The overall computation comes out to just 2 exponentiations and 2
multiplications, followed by the table lookup. This yields the following corollary:

Corollary 3.21 (SNARG from ElGamal with Preprocessing). Let C : {0, 1}n×{0, 1}h → {0, 1} be a Boolean
circuit of size s. Let ε > 0 be a soundness parameter and δ > 0 be a zero-knowledge parameter. Assuming the
ElGamal encryption scheme (over a prime order group G of order p) satisfies linear targeted malleability with
respect to a target message space [−B,B] for B = poly(s, 1/ε, 1/δ), there exists a designated-verifier SNARG
for RC with statistical completeness, non-adaptive soundness error ε, and proofs of size 2 log|G|. The CRS

has size O(s2). The setup algorithm runs in time Õ(s2 +
√
s/ε) and outputs a table T of size Õ(

√
s/ε). The

prover runs in time O(s2) and the verifier runs in time Õ(1) given access to the precomputed table T. If we
extend the SNARG to provide δ-HVZK, the setup algorithm now runs in time O(s2 +

√
s log(1/δ)/(δε)) and

outputs a table T of size O(
√
s log(1/δ)/(δε)). Given access to the precomputed table, the verifier’s runtime

is Õ(1). All of the running times and table sizes are up to polylog(p) factors.

Remark 3.22 (Arguments of Knowledge). The SNARG constructions in Corollaries 3.19 to 3.21 are all
arguments of knowledge (i.e., “SNARKs”) since the underlying linear PCPs from Appendix B provide
knowledge soundness and Construction 3.4 preserves the knowledge soundness of the underlying linear PCP.

Remark 3.23 (Reducing the Table Size). For many parameter settings (see Section 3.3 and Table 2), the
size of the lookup table required to implement fast verification is modest. However, in cases where space is
a premium, there are several ways to reduce the space at the expense of other parameters. One approach
is to trade-off space usage for soundness by storing the elements in a bloom filter [Blo70] instead of a hash-
table. Another approach that trades off space for verification time is to construct a Hellman table [Hel80]

for inverting the function x 7→ gx−rx
2

, which precisely corresponds to the verification relation (note that the

scaling factor r is known at preprocessing time). In this case, if there are Õ(s1/2) possible values for x, a

Hellman table would enable inversion in time roughly Õ(s1/3) and require a table of size Õ(s1/3).

Remark 3.24 (Adaptive Soundness). All of the SNARG constructions in Corollaries 3.19 to 3.21 satisfy
adaptive soundness (where the prover can choose the statement after seeing the CRS) if we model the group
G of the ElGaml encryption scheme as a generic group (see Remark A.10 and Theorem C.10).13 In this
setting of adaptively-sound SNARGs, the Gentry-Wichs lower bound [GW11] rules out the possibility of
basing security on a falsifiable assumption, on some non-falsifiable assumption or working in an idealized
model seems necessary in the security analysis.

An alternative instantiation from Paillier. We can also compile our 1-query (bounded) linear PCP
from Corollary 3.14 to obtain a designated-verifier SNARG using an encryption scheme based on Paillier.
We discuss this below.

Remark 3.25 (Paillier-Based Instantiation). Assuming that the Paillier encryption scheme satisfies linear
targeted malleability, we can directly apply the [BCI+13] compiler to obtain a SNARG where the proof
consists of a single Paillier ciphertext. Moreover, if we choose the bound parameter τ = λω(1) to be super-
polynomial in the security parameter λ, then the soundness error of the linear PCP from Corollary 3.14
becomes negligible, and we obtain a designated-verifier SNARG with negligible soundness error based on
Paillier. Previously, Bitansky et al. [BCI+13] constructed a SNARG based on Paillier with the same level
of succinctness (a single group element) by starting from a single-query linear PCP based on a classic PCP.
We compare our instantiations here:

13Bitansky et al. [BCI+13] also showed that if the underlying encryption scheme satisfies a stronger extractability notion called
“linear-only” security, then the resulting SNARG also satisfies adaptive soundness. However, it is not clear that the vanilla
ElGamal encryption scheme satisfies this stronger extractability notion (even if we work in the generic group model).
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� Reusability: One of our advantage of our 1-query linear PCP (without zero-knowledge) is that it
provides strong soundness. This is not true of the 1-query linear PCP from [BCI+13] (see Remark 3.17).
As such, if we make a stronger interactive linear-only assumption on Paillier, we obtain a reusable
designated-verifier SNARG from the Paillier assumption where the proof consists of just two Paillier
ciphertexts. No such reusable Paillier-based construction with this level of succinctness is known
from [BCI+13].

� Linear PCPs vs. classic PCPs: The 1-query linear PCP from [BCI+13] relied on classic PCP as a
starting point (i.e., the prover must first encode its statement and witness using a classic PCP). This in-
curs a substantial concrete overhead on the efficiency of the resulting construction, especially compared
to more lightweight linear PCPs based on the Hadamard code or quadratic span programs [GGPR13].
In contrast, our construction shows how to pack linear PCPs into a 1-query linear PCP.

� CRS size and prover complexity: One advantage of the [BCI+13] constructions is that the size
of the CRS, and correspondingly, the prover complexity is quasi-linear in the circuit size, while in our
construction, both the CRS and the prover complexity are quadratic in the circuit size (due to our
reliance on the Hadamard linear PCP for our underlying packing construction).

3.3 Concrete Efficiency of the ElGamal-Based SNARG

In this section, we provide some concrete performance estimates for the designated-verifier SNARG from
Corollaries 3.20 and 3.21 for different circuit sizes, soundness parameters, and zero-knowledge parameters.
We estimate the size of the CRS (based on the number of group elements), the prover complexity (in terms
of the number of elementary group operations), and the verifier’s cost (measured in the size of its lookup
table in the case of the preprocessing construction from Corollary 3.21 and its time complexity in the case
of the non-preprocessing variant from Corollary 3.20). The main results are summarized in Table 2.

CRS size. From Theorem 3.11, the query length of the linear PCP for a Boolean circuit of size s is
(s2 + 3s)/2. In the SNARG, each element in the CRS is encrypted with ElGamal encryption. While a
standard ElGamal ciphertext consist of two group elements, we note that the first component is uniformly
random and independent of the message. Thus, rather than include it as part of the CRS, it can instead be
derived as the output of a random oracle. In this case, the CRS only needs to contain the message-embedding
component (i.e., the second component) of each ElGamal ciphertext. Note that in this setting where the first
half of the ElGamal ciphertext is derived from the output of a random oracle, knowledge of the ElGamal
secret key is necessary to construct the ciphertexts. By appealing to the random oracle heuristic, the CRS
only needs to contain one group element for each component of the linear PCP query vector. Each group
element can be represented by log p bits, thus yielding an overall CRS size of (s2 + 3s)/2 · log p bits.

Prover complexity. The prover has to homomorphically compute the inner product between the en-
crypted query in the CRS and its proof vector π. Recall that in the Hadamard linear PCP (Appendix B),
an honestly-generated proof vector π = [z, z⊗ z] consists of the wire labels z to the Boolean circuit together
with the pairwise products z⊗ z. If we assume that the wire values z to the Boolean circuit to be roughly
split between 0 and 1, then we would expect roughly 3/4 of the entries in π to be 0. For each non-zero entry
in the proof vector, the prover has to perform two group operations, so the total number of group operations
the prover performs when the wire labels to the circuit are roughly balanced is (s2 + 3s)/4 · log p. In the
worst case where most of the wire labels to the circuit are 1, the prover would have to perform (s2 +3s) · log p
group operations.

Verifier complexity. For our concrete efficiency estimates, we focus on the constructions with sublinear
verification complexity (Corollaries 3.20 and 3.21). Let c be the desired completeness error, ε be the desired
soundness error, and δ be the desired honest-verifier zero-knowledge parameter. The verification complexity
is dominated by the cost of checking whether there exists a value a1 ∈ [−b1(τ), b1(τ)] that satisfies Eq. (3.7),
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where b1 denotes the bound on the response to the first query in the underlying linear PCP, and τ is the
bound parameter for the bounded linear PCP. Let N be the size of this interval. For our bounded linear PCP
based on the Hadamard code (Appendix B), if we set the completeness error to c, then by Theorem B.18,
we have that

b1(τ) = τ
√
s/2

(√
ln(2/c) + 2/δ

√
ln(4/δ)

)
. (3.8)

By Corollary 3.14, the SNARG obtained from this linear PCP satisfies soundness error ε = 3/τ . Thus, we
set τ = 3/ε in Eq. (3.8) to achieve the desired level of soundness. This means that

N = 2b1(3/ε) = 6/ε ·
√
s/2 ·

(√
ln(2/c) + 2/δ

√
ln(4/δ)

)
.

We consider two settings, depending on whether the verifier has a lookup table or not:

� Verifier storage with lookup table: The lookup table needs to store an entry for each of the N
values. To reduce space, instead of storing the full group element (log p bits), we instead store a hash
of the element. If the output of the hash function is 2 logN bits, then with constant probability,
there will not be a collision in their hash values (we can also ensure this by repeatedly sampling hash
functions until finding one without collisions). Along with each hash value, we store the value of
a1 ∈ [−b1(τ), b1(τ)] to which it corresponds. Overall, the lookup table requires 3 logN bits of storage.

� Verifier complexity without lookup table: In the setting without a lookup table, the verifier can
exhaustively search the interval [−b1(τ), b1(τ)] with a total of 2N group multiplications. In particular,
the verifier leverages the fact that in Eq. (3.7),

g(a1+1)−r(a1+1)2 = g(a1−ra21)g(1−2a1r).

Thus, if the verifier has computed values ga1−ra
2
1 and g1−2a1r, it can compute the values g(a1+1)−r(a1+1)2

g1−2(a1+1)r = g1−2a1rg−2r with two group multiplications.

Microbenchmarks for group operations. To provide estimates for the concrete running time of our
SNARG, we measure running times for a single group exponentiation and a single group operations (averaged
over 100,000 runs) on the Curve25519 elliptic curve [Ber06] using the libsodium implementation on a
standard laptop. Based on our estimates, a single group exponentiation requires ≈ 0.054ms of computation
while a single group multiplication requires ≈ 0.014ms. Each group element is represented by 32 bytes.

4 1-Query Linear PCP from Hardness of Approximation

In this section, we show how to construct a 1-query instance-dependent linear PCP with a linear decision
procedure and negligible soundness error. Combined with the compiler from [BCI+13], and assuming linear
targeted malleability of ElGamal encryption, we obtain the first laconic argument with negligible soundness
error where the proof consists of a single ElGamal ciphertext. Note that we do not obtain a SNARG because
the verifier’s first message (i.e., the verifier’s query) depends on the statement.

The minimum weight solution problem. The basis of our new 1-query linear PCP is the promise
version of of the minimum weight solution problem (MWSP) from [KPV12, Definition 2.4]. While [KPV12]
defines the problem with respect to the binary field F2, we consider a generalization of the problem to general
finite fields.

Definition 4.1 (Gap Minimum Weight Solution Problem (GapMWSP)). For an approximation factor β > 1,
an instance of GapMWSPβ is a triple (A,b, d) where A ∈ F`×n, b ∈ F` for some finite field F, and d ∈ N
such that

28

https://doc.libsodium.org/


� (A,b, d) is a yes instance if there exists a solution x ∈ Fn such that Ax = b and v has Hamming
weight at most d (i.e., v has at most d nonzero entries).

� (A,b, d) is a no instance if every solution x ∈ Fn where Ax = b has Hamming weight at least β · d.

Lemma 4.2 (Hardness of GapMWSP). For any constant c > 0, β = logc n and any finite field F where
log|F| = poly(n), the GapMWSPβ problem is NP-hard. Specifically, there exists a deterministic Karp-Levin
reduction from SAT to GapMWSPβ, where the reduction algorithm takes a target field F as an explicit input
and outputs an instance (A,b, d) over F in time poly(n, log|F|).

Lemma 4.2 follows by a direct adaptation of [HKLT19, Theorem 2.1], generalized to arbitrary finite fields.
We give the proof in Appendix D.

A linear PCP for GapMWSP and a laconic argument for NP. We now show how to construct a
simple 1-query (instance-dependent) linear PCP for the GapMWSP problem. Then, together with ElGamal
encryption, we can invoke the [BCI+13] compiler (Theorem A.11) to obtain a 2-message laconic argument
for GapMWSP, and correspondingly, by Lemma 4.2, for all of NP.

Construction 4.3 (Linear PCP for GapMWSP). Let ε > 0 be a completeness parameter and β > 0 be the
approximation factor. We construct a 1-query instance-dependent linear PCP ΠLPCP = (QLPCP,PLPCP,DLPCP)
for GapMWSPβ as follows:

� QLPCP(A,b, d): On input a GapMWSPβ (A,b, d) where A ∈ F`×n, b ∈ F` and d ∈ N, the query
algorithm does the following:

1. Sample a random vector e ∈ Fn where each component ei = 0 with probability 1−ε/d and ei
r← F

otherwise.

2. Sample a random vector r
r← F`.

Output the query qT = rTA + eT ∈ Fn and st = rTb ∈ F.

� PLPCP((A,b, d),y): On input a GapMWSPβ instance (A,b, d) and a witness y ∈ Fn, output π = y.

� DLPCP(st, a): On input the verification state st ∈ F and a response a ∈ F, the verifier outputs 1 if a = st
and 0 otherwise.

Theorem 4.4 (Completeness). Construction 4.3 has completeness error 1/ε.

Proof. Let (A,b, d) be a yes instance for GapMWSPβ and y ∈ Fn be a witness. Let (st,q)← QLPCP(A,b, d),
π ← PLPCP((A,b, d),y). By construction, π = y and moreover, Ay = b and wt(y) ≤ d. This means that

qTπ = rTAy + eTy = rTb + eTy.

By construction, each component of e is sampled independently and is zero with probability 1− ε/d. Since
wt(y) ≤ d, over the randomness of e, we have that

Pr[eTy = 0] ≥ (1− ε/d)wt(y) ≥ (1− ε/d)d ≥ 1− ε.

Thus, with probability 1− ε, eTy = 0, and so qTπ = rTb, and the verifier accepts.

Theorem 4.5 (Soundness). If εβ = ω(log n), then Construction 4.3 has soundness error 1/|F|+ negl(n).

Proof. Take any no instance (A,b, d). Consider any proof π∗ = y∗ ∈ Fn and δ∗ ∈ F. Suppose the verifier
accepts. Then, it must be the case that

rTb = qTπ∗ + δ∗ = rTAy∗ + eTy∗ + δ∗,

or equivalently, that
rT(Ay∗ − b) + eTy∗ + δ∗ = 0. (4.1)

We can view Eq. (4.1) as a polynomial in r and e. We consider two cases:
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� Suppose that Ay∗ 6= b. In this case, Eq. (4.1) is a nonzero polynomial in r. Since r is uniform over
Fk (and independent of all other quantities), by the Schwartz-Zippel lemma,

Pr[rT(Ay∗ − b) + eTy∗ + δ∗ = 0 | r r← F`] ≤ 1/|F|.

Thus, in this case, the verifier accepts with probability at most 1/|F|.

� Suppose that Ay∗ = b. Since (A,b, d) is a no instance, this means that wt(y∗) ≥ β · d. Let
Sy∗ = {i ∈ [n] : y∗i 6= 0} be the set of indices in y∗ that are nonzero. By construction, each component
ei for i ∈ [n] is independent and nonzero with probability ε/d. This means that

Pr[∀i ∈ Sy∗ : ei = 0] = (1− ε/d)
wt(y∗) ≤ (1− ε/d)

βd ≤ e−εβ = negl(n),

whenever εβ = ω(log n). In this case, with probability 1 − negl(n), there exists some i ∈ [n] where
ei 6= 0 and y∗i 6= 0, and correspondingly, the polynomial in Eq. (4.1) is nonzero in ei. Since ei is uniform
over F in this case, the probability that Eq. (4.1) holds is 1/|F| by Schwartz-Zippel. Thus, in this case,
the verifier accepts with probability at most 1/|F|+ negl(n).

We conclude that over the verifier’s randomness, for a false statement x /∈ L, the verifier accepts with
probability at most 1/|F|+ negl(n).

Corollary 4.6 (1-Query Linear PCP for NP). Let F be a finite field, let C = {Cλ}λ∈N be a family of Boolean
circuits where each circuit Cλ has size s = s(λ). Let LC be the associated language of Boolean circuit
satisfiability. There exists an instance-dependent 1-query linear PCP for LC over F with completeness error
o(1), and soundness error 1/|F|+ negl(λ). The query size is poly(λ, s).

Proof. Take any constant c > 2. We instantiate Construction 4.3 with β(λ) = logc λ and ε(λ) = 1/
√
β(λ) =

o(1). In this case, εβ = ω(log λ), so by Theorems 4.4 and 4.5, Construction 4.3 is a linear PCP for GapMWSPβ
with completeness error o(1) and soundness error 1/|F|+ negl(λ). The claim now follows by Lemma 4.2.

Corollary 4.7 (Laconic Argument for NP from ElGamal). If the ElGamal encryption scheme over a group
G (Construction C.4) satisfies linear targeted malleability with respect to singleton subsets (Definition A.6),
there exists a 2-message laconic argument for NP with completeness error o(1) and negligible soundness error
where the prover’s message consists of 2 group elements (i.e., has size 2 log|G|).

Proof. The linear PCP from Construction 4.3 and Corollary 4.6 has the property that for every query, there
is a single response that the verifier accepts, and moreover, this is known at query-generation time. Thus, if
the ElGamal encryption scheme satisfies linear targeted malleability with respect to sets of size 1, then the
claim follows from Theorem A.11 and Remark A.12.

Remark 4.8 (Algebraic Degree of the Verifier in Construction 4.3). The linear PCP for GapMWSP from
Construction 4.3 has the property that the algebraic degree of the verifier’s decision algorithm is linear.
This means we can potentially apply the pairing-based compiler from [BCI+13] to obtain a laconic argu-
ment for GapMWSP (and NP) with a “predictable” prover message (i.e., there is a single prover message
that the verifier accepts). Such argument systems directly imply witness encryption for the underlying
language [FNV17] (see Section 5 for a more comprehensive discussion). Unfortunately, the pairing-based
compiler from [BCI+13] cannot be applied to Construction 4.3 because the algebraic degree of the query-
generation algorithm in the linear PCP is super-polynomial. Specifically, the components of the error vector
e ∈ Fn in Construction 4.3 is zero with noticeable probability. Thus, the minimal degree of any polynomial
that computes the components of e is at least |F|/poly(λ), which is super-polynomial when |F| is super-
polynomial. The pairing-based compiler in [BCI+13] only applies to linear PCPs where the algebraic degree
of the query-generation algorithm is poly(λ) (and the algebraic degree of the decision algorithm is at most 2).
In contrast, the compilers in the designated-verifier setting based on linear-only encryption do not impose
any restrictions on the algebraic degree of the query-generation or decision algorithms.
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Remark 4.9 (On the Lower Bound from [Gro16]). Previously, Groth [Gro16] gave a lower bound against the
existence of any 2-message linear interactive proof with a linear decision procedure for any hard language L.
Construction 4.3 gives a 1-query linear PCP for general NP with a linear decision procedure. Our construction
is not in conflict with the lower bound of [Gro16] because it does not satisfy perfect completeness, while the
lower bound of [Gro16] relied on the underlying proof having sufficiently small completeness error.

Here, we provide some high-level intuition for why this is the case. For simplicity, we present the lower-
bound argument from [Gro16] for the special case of 1-query linear PCPs. Take a hard NP language L
(i.e., one where yes instances are hard to distinguish from no instances), and consider a 1-query linear
PCP (QLPCP,PLPCP,DLPCP) for L over a finite field F. Suppose (st,q) ← QLPCP. For a proof π ∈ F`, the
verifier’s decision algorithm takes as input the response a = qTπ ∈ F together with the statement x and the
verification state st. If the verifier’s decision procedure is linear, then the verification relation corresponds

to testing a
?
= b where b ∈ F is a function of the state st and the statement x (but independent of the proof

π). Correspondingly, this means that the proof π must satisfy the linear relation qTπ = b.
This yields the following algorithm for deciding membership of x. Let m = ` · dlog|F|e. For i ∈ [m],

sample (sti,qi) ← QLPCP, and compute the verification target bi ∈ F from x and sti. Let Q ∈ Fm×` be the
matrix whose rows are the vectors qT

1 , . . . ,q
T
m and let b ∈ Fm be the vector whose entries are b1, . . . , bm.

The decision algorithm outputs 1 if there exists π ∈ F` such that Qπ = b and 0 otherwise. Now, if the
completeness error of the underlying linear PCP is negligible (or zero), then for a statement x ∈ L, such
a proof π exists with overwhelming probability (namely, the honestly-generated proof will pass all of the
verification relations). Conversely, when x /∈ L, soundness of the linear PCP ensures that any fixed string
π ∈ F` will satisfy the ith verification procedure with negligible probability. Applying a union bound over
all possible proof strings π ∈ F`, the probability that there exists π ∈ F`p where Qπ = b is negligible.

The above algorithm distinguishes between yes instances and no instances by checking whether there is
a solution π ∈ F` that satisfies the linear system Qπ = b. However, when the proof system has noticeable
completeness error, the proof π output by an honest prover may fail to satisfy the verification relation
qT
i π = bi with noticeable probability. In this case, there is no longer a guarantee that for yes instances, a

solution π ∈ F` to the linear system exists, and as such, the above distinguisher no longer applies.

5 1-Element Laconic Arguments and Witness Encryption

In this section, we first show that any laconic argument system for an NP language L (with negligible
soundness error) where the proof consists of a single group element (i.e., a “1-element laconic argument”)
and where the verification algorithm can be modeled as a “generic” algorithm implies a witness encryption
scheme for L. Note that since the prover is restricted to sending a single group element, this effectively
restricts the prover to sending at most one message in the protocol. Thus, it suffices to just consider 2-
message laconic arguments here. Our construction of witness encryption proceeds in two steps. We first
show that any laconic argument satisfying the above properties must be predictable [FNV17]. We then invoke
the Faonio et al. [FNV17] compiler on the predictable argument to obtain a witness encryption scheme.

Next, we show that under a new hypothesis on the hardness of approximating the minimum distance of
a linear code [DMS99] (Hypothesis 5.12), we can construct a laconic element for NP where the proof consists
of a single group element in the generic group model. Thus, under our hypothesis, we obtain a witness
encryption scheme for NP in the generic group model.

5.1 Predictable Arguments and Witness Encryption

We begin by reviewing the notion of a witness encryption scheme [GGSW13] as well as the notion of a
predictable argument [FNV17] and their connections to witness encryption.

Definition 5.1 (Witness Encryption [GGSW13]). A witness encryption for an NP relationR (and associated
language L) and correctness error c = c(λ) is a tuple ΠWE = (Encrypt,Decrypt) with the following syntax:
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� Encrypt(1λ, x,m)→ ct: On input the security parameter λ, a statement x, and a message m ∈ {0, 1},
the encryption algorithm outputs a ciphertext ct.

� Decrypt(w, ct) → m: On input a witness w and a ciphertext ct, the decryption algorithm outputs a
message m ∈ {0, 1} ∪ {⊥}.

Moreover, ΠWE should satisfy the following properties:

� Correctness: For every λ ∈ N, every message m ∈ {0, 1}, and every (x,w) ∈ R,

Pr[Decrypt(w,Encrypt(1λ, x,m)) = m] ≥ 1− c(λ).

We say that ΠWE satisfies statistical correctness if c(λ) = negl(λ) and perfect correctness if c(λ) = 0.

� Semantic security: For every efficient adversary A, there exists a negligible function negl(·) such
that for all x /∈ L,

Pr[A(1λ, ctb) = b | b r← {0, 1}, ctb ← Encrypt(1λ, x, b)] ≤ 1

2
+ negl(λ).

Remark 5.2 (Correcting Decryption Errors). Any witness encryption scheme ΠWE = (Encrypt,Decrypt)
with correctness error c(λ) < 1/2− δ where δ = 1/poly(λ) can be boosted into a witness encryption scheme
with negligible correctness error. Namely, we take the encryption of a message m (with statement x) to be
t = O(λ/δ2) independent encryptions of m (with statement x) under ΠWE. The decryption algorithm would
then decrypt each of the t ciphertexts and output the majority of the t decrypted bits. Statistical correctness
now follows by Hoeffding’s inequality.

Predictable arguments. Faonio et al. [FNV17] previously showed that a predictable argument of knowl-
edge for an NP language L implies an extractable witness encryption scheme for L. In the same work, they
also note that the same construction can be used to obtain a standard (non-extractable) witness encryption
scheme for L from any predictable argument for L. Here, a predictable argument is one where on each
round, there is a single message that causes the verifier to accept, and moreover, this message is known
to the verifier a priori. In our setting, we focus on argument systems where the prover can only send a
single group element, so it suffices to just consider 2-message arguments. While Faonio et al. focused on
the setting where the predictable argument satisfies perfect completeness (and negligible soundness), the
same transformation still applies even if the scheme has a large completeness error (specifically, it suffices
that 1 − c = 1/poly(λ), where c is the completeness error). We provide the definitions and main theorem
statements below.

Definition 5.3 (Predictable Laconic Argument [FNV17, adapted]). A 2-message laconic argument ΠLA =
(QLA,PLA,VLA) is predictable if VLA(st, π) outputs 1 if and only if st = π. Namely, on input the security
parameter λ and an instance x, the query algorithm QLA samples a query q together with a target proof
string π, which is set as the verifier’s state.

Theorem 5.4 (Predictable Arguments to Witness Encryption [FNV17, adapted]). Let ΠLA = (QLA,PLA,VLA)
be a 2-message predictable argument for an NP language L with completeness error c and soundness error
ε = negl(λ). Then, there exists a witness encryption scheme for L with correctness error c/2.

We give a proof of Theorem 5.4 in Appendix E. The proof follows the structure of the corresponding proof
in [FNV17], just extended to the setting of imperfect completeness.
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Arguments with generic verification. In the following, we will focus exclusively on arguments with a
“generic” verification procedure. We say that a 2-message argument has a generic verification algorithm if the
prover’s message consists of a tuple of group elements, and the verifier’s decision procedure only operates on
the group elements in a generic manner (i.e., the verifier can only evaluate the group operation and test if two
group elements are equal). We also allow the verifier to compute an arbitrary function (modeled as a Boolean
circuit) of the results of the equality checks it performs on the group elements. For example, this model
captures the verification algorithm of our ElGamal-based SNARGs from Section 3.2 (and more generally, any
instantiation of the [BCI+13] compiler using ElGamal encryption). In fact, all of the group-based arguments
we develop in this work have a generic verification procedure under our definition.

A similar notion of argument systems with a generic verification procedure was considered in [Gro16] in
the pairing-based setting. The [Gro16] model was more restrictive in that it required that the verifier accept
only if all of the (pairing-based) relations in the decision algorithm were satisfied. In our setting, we allow
the verifier’s decision to be any efficiently-computable function of the equality checks.

Definition 5.5 (Laconic Arguments with Generic Verification). Let ΠLA = (QLA,PLA,VLA) be a 2-message
laconic argument over a group G of prime-order p with generator g. We say that ΠLA has a generic verification
algorithm if the following properties hold:

� The state st output by QLA consists of the description of the group (G, p, g), a collection of nonzero
vectors 0 6= ai ∈ Fkp, scalars bi ∈ Fp for i ∈ [m], and the description of a Boolean circuit C : {0, 1}m →
{0, 1}. Note that the components {ai, bi}i∈[m] as well as the circuit C can depend on the statement x.

� The proof output by PLA is a vector of group elements gπ ∈ Gk where gπ = (gπ1 , . . . , gπk).

� The verification algorithm VLA proceeds in two stages. On input a proof gπ ∈ Gk and the verification

state st = ({ai, bi}i∈[m], C), the verification algorithm sets βi = 1 if ga
T
iπ = gbi and βi = 0 otherwise.

Then, the verification algorithm computes and outputs C(β1, . . . , βm).

Weak predictability of 1-element laconic arguments. We now show that argument systems with a
generic verification procedure and where the proof consists of a single group element must be predictable.
We do this in two steps. First, we show that any 1-element laconic argument satisfies a notion of “weak
predictability,” where we essentially allow there to be up to k accepting proofs (Definition 5.6). Second, we
show that any laconic argument that is weakly predictable is also predictable, but with a larger completeness
error (Theorem 5.9).

Definition 5.6 (Weakly-Predictable Laconic Argument). Let ΠLA = (QLA,PLA,VLA) be a 2-message laconic
argument for a relation R, and let T be the codomain of PLA (i.e., the set of possible proof strings). We
say that ΠLA is k-weakly predictable if there exists an efficient predictor algorithm LApredict that on input any
verification state st in the support of QLA, outputs a (possibly empty) set of proofs S ⊆ T with the following
two properties:

� Either |S| ≤ k or S ≥ |T | − k.

� VLA(st, π) = 1 if and only if π ∈ S.

Theorem 5.7 (Weak Predictability of 1-Element Laconic Arguments). Every 1-element laconic argument
for a relation R (that is computable by a Boolean circuit of size poly(λ)) with a generic verification algorithm
(Definition 5.5) is k-weakly predictable for k = poly(λ).

Proof. Let ΠLA = (QLA,PLA,VLA) be a 1-element laconic argument with a generic verification procedure. We
construct a predictor algorithm LApredict for ΠLA that works as follows:

1. On input st = ((G, p, g), {ai, bi}i∈[m], C) where 0 6= ai ∈ Fp and bi ∈ Fp, compute πi ← a−1
i bi ∈ Fp for

each i ∈ [m]. Note that the a1, . . . , am are scalars in this case because the proof consists of a single
group element.
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2. Initialize a set T ← ∅. For each i ∈ [m], add gπi ∈ G to T if VLA(st, gπi) = 1.

3. Finally, take any π′ ∈ Fp \ {π1, . . . , πm}. If no such π′ exists or VLA(st, gπ
′
) = 0, output S = T .

Otherwise, output the set S = T ∪ (G \ {gπ1 , . . . , gπm}).

It suffices to argue that LApredict satisfies each of the required properties. Since QLA is efficient, we have
that m = poly(λ), and so LApredict is efficient. By construction, the output S of LApredict satisfies |S| ≤ m or
|S| ≥ |G| −m, so the first property is satisfied. For the second property, take any candidate proof gπ ∈ G
(where π ∈ Fp). We consider two cases:

� Suppose π ∈ {π1, . . . , πm}. Then, gπ ∈ T if and only if VLA(st, gπ) = 1. Since T ⊆ S, the claim holds.

� Suppose π /∈ {π1, . . . , πm}. This means that aiπ 6= bi ∈ Fp for all i ∈ [m]. By definition then,

VLA(st, gπ) = C(0m) = VLA(st, gπ
′
). Correspondingly, gπ ∈ S if and only if VLA(st, gπ

′
) = 1 =

VLA(st, gπ), and again, the claim holds.

From weak predictability to predictability. Now we show that any laconic argument that is weakly
predictable is predictable (Definition 5.3), though with a much larger completeness error. The construction
is simple: to obtain a standard predictable argument from a weakly-predictable one, the query-generation
algorithm samples one of the k possible proofs in the weakly-predictable scheme at random as its only
accepting proof. While this transformation substantially increases the completeness error, it still suffices to
obtain witness encryption (as long as k = poly(λ)). Combining these results with Theorem 5.4, we show that
any 1-element laconic argument for an NP language L where verification is generic and which has negligible
soundness error implies a witness encryption for L (Corollary 5.10).

Construction 5.8 (Predictable Argument from Weakly-Predictable Argument). Let Π′LA = (Q′LA,P ′LA,V ′LA)
be a k-weakly predictable 2-message laconic argument for a relation R, and let LA′predict be the predictor
algorithm for Π′LA. We construct a predictable laconic argument ΠLA = (QLA,PLA,VLA) for R as follows:

� QLA(1λ, x): On input the security parameter λ and a statement x, the query-generation algorithm

computes (st′, q′) ← Q′LA(1λ, x) and runs S ← LA′predict(st
′). If 1 ≤ |S| ≤ k, it samples π

r← S and

outputs the query q = q′ and the state st = π. If |S| = 0, it samples π
r← T and outputs the query

q = q′ and the state st = π. Finally, if |S| > k, it output the query q = ⊥ and the state st = ⊥.

� PLA(q, x, w): On input a query q, the statement x, and a witness w, the prover algorithm outputs the
proof π = ⊥ if q = ⊥. Otherwise, it computes and outputs π ← P ′LA(q, x, w).

� VLA(st, π): On input the verification state st and a proof π, the verification algorithm outputs 1 if
π = st and 0 otherwise.

Theorem 5.9 (Predictable Argument from Weakly-Predictable Argument). Let Π′LA be a k-weakly pre-
dictable argument for a relation R (with associated language L) with completeness error c′ and soundness
error ε′. Let T be the codomain of P ′LA and suppose that |T | ≥ 2 · k. Then the laconic argument ΠLA from
Construction 5.8 is a predictable argument for R with completeness error c = 1− (1− c′)/k and soundness
error ε = 3 · ε′ + 1/|T |.

Proof. By construction, ΠLA is predictable, so it suffices to argue completeness and soundness:

� Completeness: Take any (x,w) ∈ R. By definition, the query-generation algorithm QLA(1λ, x) starts
by computing S ← LA′predict(st

′) where (st′, q′) ← Q′LA(1λ, x). Since Π′LA is k-weakly predictable, this
means that either |S| ≤ k or |S| > k. We define the following probabilities:

δ1 := Pr[|S| ≤ k | (st′, q′)← Q′LA(1λ, x);S ← LA′predict(st
′)]

δ2 := Pr[|S| > k | (st′, q′)← Q′LA(1λ, x);S ← LA′predict(st
′)]

p1 := Pr[V ′LA(st′, x, π) = 1 ∧ |S| ≤ k | (st′, q′)← Q′LA(1λ, x);S ← LA′predict(st
′);π ← P ′LA(x, q′)]

p2 := Pr[V ′LA(st′, x, π) = 1 ∧ |S| > k | (st′, q′)← Q′LA(1λ, x);S ← LA′predict(st
′);π ← P ′LA(x, q′)]
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Note that if |S| = 0, then V ′LA never accepts, so by definition, p1 + p2 ≥ 1 − c′. It suffices to consider
the following two cases:

– If 1 ≤ |S| ≤ k, then q = q′ and the prover algorithm computes the proof as π ← P ′LA(q, x, w). This
means that V ′LA(st′, x, π) = 1 with probability p1/δ1. By definition of S, this means that π ∈ S
with probability at least p1/δ1. Since st is sampled uniformly at random from S and |S| ≤ k, we
have that

Pr[VLA(st, π) = 1] = Pr[π = st] ≥ p1/(δk).

– If |S| > k, then q = ⊥ and the prover algorithm computes the proof as π = ⊥. In this case, the
verifier accepts with probability 1.

The verifier thus accepts with probability at least p1/(δ1k)·δ1+δ2 ≥ p1/k+p2 ≥ (p1+p2)/k ≥ (1−c′)/k.
The completeness error is then 1− (1− c′)/k.

� Soundness: Let P∗ be any polynomial-size prover for ΠLA. Take any x /∈ L, and consider (q, st) ←
QLA(1λ, x). By definition, QLA first computes (q′, st′)← Q′LA(1λ, x) and S ← LA′predict(st

′). We consider
two possibilities:

– If |S| = 0 then st is a random element from T and independent of the query q = q′. Thus, the
probability that the proof π output by the prover satisfies π = st is at most 1/|T |.

– If 1 ≤ |S| ≤ k, then q = q′. By soundness of Π′LA

Pr[V ′LA(st′, π) = 1 | (q′, st′)← Q′LA(1λ, x), π ← P∗(1λ, x, q′)] ≤ ε′.

By construction of LA′predict, we have that π ∈ S if and only if V ′LA(st′, π) = 1. Thus, with
probability at most ε′, the proof π output by P∗ in this case is contained in S. Correspondingly,
the probability that π = st ∈ S is at most ε′.

– Suppose |S| > k. By definition of weak predictability, this means that |S| ≥ |T |−k. We argue that
this case occurs with probability at most 2ε′ (over the randomness of query-generation). Suppose

otherwise, and consider a prover for Π′LA that simply outputs a random proof string π
r← T . If

|S| ≥ |T | − k, then with probability |S|/|T | ≥ (|T | − k)/|T | ≥ 1/2, we have that π ∈ S, and
V ′LA(st′, π) outputs 1. Thus, if Q′LA(1λ, x) outputs st′ such that S ← LA′predict(st

′) satisfies |S| ≥ k
with probability at least 2ε′, then this prover breaks soundness of Π′LA with probability at least
ε′, which is a contradiction. Hence, this case can only happen with probability at most 2ε′.

We conclude that if Π′LA has soundness error ε′, then ΠLA has soundness error at most 3ε′+ 1/|T |.

Corollary 5.10 (Witness Encryption from 1-Element Laconic Argument). Let ΠLA = (QLA,PLA,VLA) be a
laconic argument for an NP language L where the proof consists of a single group element and the verification
algorithm is generic (Definition 5.5). If ΠLA has completeness error c = c(λ) where 1 − c ≥ 1/poly(λ) and
negligible soundness error ε(λ) = negl(λ), then there exists a witness encryption scheme for L with statistical
correctness.

Proof. This follows by combining Theorems 5.4, 5.7 and 5.9. Namely, by Theorem 5.7, ΠLA is k-weakly
predictable for some k = poly(λ). From Construction 5.8 and Theorem 5.9, we obtain a predictable laconic
argument Π′LA for L with completeness error c′ = 1 − (1 − c)/k and soundness ε′ = 3ε + 1/|G|, where
G is the group associated with ΠLA. Since ε is negligible, so is ε′ (since 1/|G| is negligible). Thus, we
can apply Theorem 5.4 to Π′LA to obtain a witness encryption scheme for L with correctness error c′/2 =
1/2− (1− c)/(2k). Since (1− c) ≥ 1/poly(λ) and k = poly(λ), this means that c′/2 = 1/2− 1/poly(λ), so we
can use parallel repetition to amplify correctness (Remark 5.2).
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5.2 1-Element Laconic Argument from Hardness of Approximation

In this section, we show that under a hardness of approximation hypothesis for the minimum distance
problem, which strengthens known hardness results [DMS99], we can construct a 1-element laconic argument
for general NP languages. We begin by recalling the minimum distance problem and then stating our hardness
of approximation hypothesis.

Definition 5.11 (Gap Minimum Distance Problem (GapMDP) [DMS99, Definition 1]). For an approxima-
tion factor β, an instance of the GapMDPβ problem is a pair (A, d) where A ∈ Fn×k for some finite field F
and d ∈ N such that

� (A, d) is a yes instance if dist(A) ≤ d.

� (A, d) is a no instance if dist(A) ≥ β · d.

Here, dist(A) is the minimum distance (under the Hamming metric) of the code generated by A. We define
the GapMDPβ relation to be the NP relation associated with this promise problem (see Section 2 for a formal

definition) that takes as input an instance (A, d) where A ∈ Fn×k, and a witness v ∈ Fk, and outputs 1 if
the following two properties hold:

� 0 < wt(v) ≤ d;

� v ∈ Fk is a codeword in the code generated by A.

Hypothesis 5.12 (Hardness of Approximation for GapMDP). For some β = ω(log n), the GapMDPβ relation

is NP-hard for any choice of finite field F where |F| = 2O(n). Specifically, there exists a deterministic Karp-
Levin reduction from SAT to the NP relation associated with the GapMDPβ promise problem,14 where the
reduction algorithm takes a target field F as an explicit input and outputs an instance (A, d) over F in time
poly(n, log|F|).

Existing hardness results on GapMDP. Dumer et al. [DMS99] showed that the GapMDP was NP-hard
for any constant approximation factor β = O(1) (over any polynomial-size field) via a randomized reduction.
Subsequently, Cheng and Wan [CW09] as well as Austrin and Khot [AK14] gave a deterministic reduction
for the same parameter regimes. The latter results additionally give a deterministic quasi-polynomial time
reduction from NP to the GapMDPβ for any β = 2log1−ε(n) (i.e., unless NP ⊆ DTIME(2polylog(n)), there is no
polynomial-time algorithm for GapMDPβ). In our setting, we need to strengthen the existing hardness of
approximation results in two different directions: (1) Hypothesis 5.12 requires a deterministic polynomial time
reduction to GapMDP while the existing reductions in the super-constant regime are all quasi-polynomial;
and (2) we require that the reduction applies to large prime characteristic fields (i.e., fields that are super-
polynomial in the instance size). While existing reductions are agnostic about the choice of the field, the
running time of existing reductions scale polynomially in the characteristic of the field, so they do not
directly generalize to super-polynomial size fields.15 While existing techniques do not suffice for proving
Hypothesis 5.12, there are no known barriers to doing so [Kho20]. Finally, we note that existing reductions
from NP to GapMDPβ are Karp-Levin reductions; namely, existing reductions show how to map NP instances
to GapMDPβ instances (that respect the promise), and moreover, construct an explicit witness for GapMDPβ
from a witness for the NP-hard problem.

Construction 5.13 (Laconic Argument for GapMDP). Let λ be a security parameter, ε > 0 be a complete-
ness parameter, and β > 0 be the approximation factor. Let GroupGen be a prime-order group generator, and
let p = p(λ) be the order of the group output by GroupGen. We construct a two-message laconic argument
ΠLA = (QLA,PLA,VLA) for GapMDPβ (for instances over Fp):
14We refer to Section 2 for a formal definition of Karp-Levin reductions from an NP problem to an NP promise problem.
15We formulate the hypothesis for |F| = 2O(n), although any field of super-polynomial size would also suffice.
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� QLA(1λ, (A, d)): On input the security parameter λ and an GapMDPβ instance (A, d) over Fp, the

query algorithm samples (G, p, g) ← GroupGen(1λ). Let H ∈ F`×kp be the parity check matrix for the
code generated by A. Then the verifier constructs the following components:

– Sample a random vector e ∈ Fkp where each component ei = 0 with probability 1 − ε/d and

ei
r← Fp otherwise.

– Sample c
r← Fkp, r

r← F`p, s
r← Fp and compute zT = rTH + scT + eT ∈ Fkp.

The algorithm outputs ((G, p, g), c, gz) as its query and st = gs as its state. Here, we write gz to denote
the vector of group elements (gz1 , . . . , gzk), where z1, . . . , zk are the components of z.

� PLA(q, x, w): On input a query q = ((G, p, g), c, gz), a GapMDP instance (A, d) and a witness v ∈ Fkp,
the prover algorithm does the following:

– If cTv = 0, then the prover aborts with output ⊥. Otherwise, let t = (cTv)−1.

– Output the proof π = gt·z
Tv (which can be computed from t, v, and gz).

� VLA(st, π): On input the verification state st ∈ G and a proof π ∈ G, output 1 if st = π, and 0 otherwise.

Completeness and soundness analysis. We now state the completeness and soundness theorems for
Construction 5.13 as well as the resulting implication to 1-element laconic arguments and witness encryption
for NP in the generic group model. We defer the completeness and soundness proofs to Section 5.3.

Theorem 5.14 (Completeness). Construction 5.13 has completeness error ε.

Theorem 5.15 (Soundness). If εβ = ω(log n) and GroupGen is modeled as a generic group, then Construc-
tion 5.13 has soundness error negl(λ).

Corollary 5.16 (1-Element Laconic Argument for NP). Let λ be a security parameter. Under Hypothe-
sis 5.12, there exists a predictable laconic argument for NP in the generic group model with completeness
error o(1) and soundness error negl(λ) and where the prover’s message consists of a single group element.

Proof. Let β(λ) = f(λ) log λ where f(λ) = ω(1) for which Hypothesis 5.12 holds. Take ε = 1/
√
f(λ) = o(1).

By instantiating Construction 5.13 with this choice of β, ε and appealing to Theorems 5.14 and 5.15, we
obtain a laconic argument for GapMDPβ with completeness error ε = o(1) and soundness error negl(λ).
In addition, Construction 5.13 is predictable by construction. Finally, by Hypothesis 5.12, there exists a
deterministic polynomial-time Karp-Levin reduction from NP to GapMDPβ , and so we can use our laconic
argument for GapMDPβ to obtain a laconic argument for any NP language.

Corollary 5.17 (Hypothetical Witness Encryption for NP in the Generic Group Model). Under Hypothe-
sis 5.12, there exists a witness encryption scheme for NP in the generic group model.

Proof. Follows by instantiating Theorem 5.4 with the predictable laconic argument from Corollary 5.16 (and
applying the correctness amplification approach from Remark 5.2).

Remark 5.18 (Linear PCP for GapMDP). We note that Construction 5.13 implicitly constructs a 2-query
(instance-dependent) linear PCP ΠLPCP = (QLPCP,PLPCP,DLPCP) for the GapMDPβ problem:

� QLPCP(A, d): On input a GapMDPβ instance (A, d) over a finite field F, let H ∈ F`×k be the parity

check matrix for the code generated by A. Sample c
r← Fk r

r← F`, e ∈ Fk and s
r← F as in

Construction 5.13. Output the queries qT
1 = rTH + scT + eT ∈ Fk and qT

2 = cT ∈ Fk and the state
st = s.

� PLPCP((A, d),v): On input an instance (A, d) and a vector v ∈ Fk, output the proof π = v ∈ Fk.
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� VLPCP(st,a): On input a state st = s and responses a = (a1, a2) ∈ F2, the verifier accepts if a1 6= 0 and
a1 = s · a2, and rejects otherwise.

Completeness and soundness of this linear PCP follows via a similar analysis as in the proof of Theorems 5.14
and 5.15.

Remark 5.19 (Witness Encryption via GapMWSP). A natural question is whether we might be able to
obtain a predictable argument (and correspondingly, a witness encryption scheme) for NP starting from
the 1-query linear PCP for GapMWSP from Construction 4.3. While the 1-query linear PCP in Construc-
tion 4.3 is a predictable 1-query linear PCP, we do not have a generic compiler that takes a 1-query linear
PCP and compiles it into a 1-element argument system (the [BCI+13] compiler with ElGamal encryption
yields a 2-element non-predictable argument). Moreover, the general approach from Construction 5.13 of
encoding the linear PCP query in the “exponent” does not yield a sound argument system when applied
to Construction 4.3. Specifically, the soundness analysis in Construction 5.13 critically relied on the noise
vector e being hidden from the view of the prover. If we directly embed the linear PCP query rTA + eT

from Construction 4.3 in the exponent (i.e., we take the verifier message to be gr
TA+eT

), then a malicious

prover who can find a vector x ∈ Fn with low Hamming weight where Ax = 0 can compute ge
Tx, which leaks

information about the indices of the non-zero components of e. This is not an issue for Construction 5.13
since for false instances, the GapMDP problem stipulates that no such low density vectors x exist.

Remark 5.20 (Hyperplane Obfuscation and Witness Encryption). An alternative approach to obtaining a
witness encryption scheme for the GapMWSP problem is to obfuscate the predictable 1-query linear PCP
from Construction 4.3. In more detail, suppose we want to encrypt a message m for the GapMWSP instance
(A,b, d). To do so, the encrypter first samples a linear PCP query q ∈ Fp for the GapMWSP instance
together with the expected response t ∈ F by running the query-generation algorithm from Construction 4.3.
Then, the encrypter constructs the program Pq,t,m(π) that on input π ∈ Fn outputs m if qTπ = t and
outputs ⊥ otherwise. The ciphertext is an obfuscation of the program Pq,t,m. To decrypt, the decrypter
constructs a linear PCP proof π ∈ Fn for the instance (A,b, d) and runs the program on input π. Correctness
of the encryption scheme then follows by completeness of the linear PCP, while semantic security follows
from soundness of the linear PCP and assuming that the obfuscated program completely hides (q, t,m),
up to what can be deduced from the input-output behavior of the program Pq,t,m. For instance if we
have an ideal or virtual black-box obfuscation (VBB obfuscation) [BGI+01] of Pq,t,m, then we can leverage
Construction 4.3 to obtain a witness encryption for GapMWSP, and by Lemma 4.2, for all of NP.

While VBB obfuscation for general circuits is impossible in the standard model [BGI+01], we do have
positive results for specific families function families such as point functions [Can97, Wee05a, CD08], linear
subspaces [CRV10], conjunctions [BVWW16], and more recently, “compute-and-compare” programs [WZ17,
GKW17] (also called “lockable obfuscation”). In our setting, the program Pq,t,m is simple and corresponds
to membership testing in a secret affine hyperplane in Fn (i.e., the set of solutions π ∈ Fn to the affine
relation qTπ = t). More broadly, the program Pq,t,m is an example of a compute-and-compare program
(i.e., a program that first performs a computation (e.g., qTπ) and outputs a message only if the result of the
program matches a target value t). However, existing constructions of lockable obfuscation and compute-
and-compare obfuscation require that the target value be computationally unpredictable even given the
underlying function. In our case, this means that the target t should be computationally unpredictable
even given the query q, which does not hold in our setting. With respect to the obfuscation scheme for
hyperplane membership from [CRV10], the construction only support linear subspaces (i.e., the case where
the target value is 0) and does not extend to affine hyperplane membership testing. Nonetheless, we believe
this to be an interesting connection between witness encryption for NP and obfuscation for affine hyperplane
membership testing and may provide new avenues for constructing witness encryption for NP (without relying
on Hypothesis 5.12).

5.3 Analysis of Construction 5.13.

In this section, we give the completeness and soundness analysis of Construction 5.13.
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Proof of Theorem 5.14 (Completeness). Let (A, d) be a GapMDPβ instance with solution 0 6= v ∈ Fkp;
namely, Hv = 0 and wt(v) ≤ d. Let ((G, p, g), c, gz) be the verifier’s query. Since v 6= 0 and c is uniform over
Fkp, we can apply Schwartz-Zippel lemma to conclude that cTv 6= 0 except with probability 1/|Fp| = negl(λ).

Thus, the prover can successfully compute t = (cTv)−1 and the proof π = gt·z
Tv from t, v, and gz. By

construction,
zTv = rTHv + scTv + eTv = scTv + eTv,

since Hv = 0. Next, we claim that with probability at least 1 − ε, eTv = 0. Since wt(v) ≤ d and each
component of e is zero with probability 1− ε/d, we have that

Pr[eTv = 0] ≥ (1− ε/d)
wt(v) ≥ (1− ε/d)

d ≥ 1− ε

for d ≥ 1. Thus, with probability at least 1− ε,

π = gt·z
Tv = g(cTv)−1s(cTv) = gs = st,

and the verifier accepts.

Proof of Theorem 5.15 (Soundness). Take any no instance (A, d), and let H be the parity-check
matrix for the code generated by A. We use a hybrid argument:

� Hyb0: This is the real soundness experiment where we replace the group (G, p, g) with oracle access to
a generic group G. The challenger runs (pp, sk, p) ← GGM.Setup(1λ). It constructs z ∈ Fkp as in QLA

and computes hi ← GGM.Encode(sk, zi), where zi denotes the ith components of z. It also computes
st ← GGM.Encode(sk, s) and g ← GGM.Encode(sk, 1). The challenger gives ((pp, p, g), c, h1, . . . , hk)
to the prover. The prover is then given access to the generic group oracles GGM.Setup, GGM.Encode,
GGM.Add, GGM.Test. At the end of the game, the prover outputs a proof π ∈ {0, 1}λ, and the challenger
outputs 1 if π and st encode the same value (by using GGM.Add and GGM.Test), and 0 otherwise.

� Hyb1: In this experiment, we change how the generic group oracle queries are implemented. Specifically,
the challenger begins by sampling (pp, sk, p) ← GGM.Setup(1λ) as in Hyb0. In this experiment, the
challenger will explicitly maintain the mapping T of encodings to handles. The challenger samples

encodings g
r← {0, 1}λ, h1, . . . , hk

r← {0, 1}λ and st
r← {0, 1}λ and adds mappings g 7→ 1, hi 7→ ẑi,

st 7→ ŝ, where ẑ1, . . . , ẑk, and ŝ are formal variables (see Remark C.3). It also samples c
r← Fkp as in

Hyb0. The challenger gives ((pp, p, g), c, h1, . . . , hk) to the prover. The prover is then given access to
the generic group oracles, which are implemented as follows:

– GGM.Setup: The challenger always replies with ⊥.

– GGM.Encode: The challenger always replies with ⊥.

– GGM.Add: On input a key k and handles ξ1, ξ2 ∈ {0, 1}λ, the challenger checks that k = pp and
handles ξ1, ξ2 are present in T and mapped to formal polynomials f1, f2 over Fp (returning ⊥
otherwise). If the checks pass, the oracle samples a fresh handle ξ

r← {0, 1}λ, adds the entry
ξ 7→ (f1 + f2) to T, and replies with ξ.

– GGM.Test: On input a key k and a handle ξ, the oracle checks that k = pp, that ξ is present in
T and mapped to a formal polynomial f over Fp (returning ⊥ otherwise). If the checks pass, the
oracle outputs “zero” if f ≡ 0 is the identically-zero polynomial over Fp and “nonzero” otherwise.

At the end of the game, after the prover outputs its proof π, the output of the experiment is 1 if π
and st encode identical polynomials over Fp (i.e., π 7→ f1 and st 7→ f2 such that f1 − f2 ≡ 0 over Fp).
Otherwise, the output of the experiment is 0.

� Hyb2: Same as Hyb1 except the challenger samples st
r← {0, 1}λ and adds the mapping st 7→ s after

the adversary has outputted its proof. The output is still computed as in Hyb1.
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For an adversary A, we write Hybi(A) to denote the output of experiment Hybi with adversary A.

Lemma 5.21. For all adversaries A that make a polynomial number of queries to G, |Pr[Hyb0(A) = 1] −
Pr[Hyb1(A) = 1]| = negl(λ).

Proof. First, the components (pp, p, g, c, h1, . . . , hk) are identically distributed in Hyb0 and Hyb1. Thus, it
suffices to show that each of the adversary’s queries to the generic group oracle are statistically indistinguish-
able. We use a hybrid argument over the number of queries the adversary makes, where in the ith hybrid
Hyb0,i, the first i queries are answered according to the specification in Hyb1 while the remaining queries are
answered according to the specification in Hyb0. We show that for all i, the outputs of Hyb0,i−1 and Hyb0,i

are statistically indistinguishable. It suffices then to consider the ith query:

� GGM.Setup: In both Hyb0,i−1 and Hyb0,i, the setup oracle outputs ⊥.

� GGM.Encode: In Hyb0, the GGM.Encode oracle outputs ⊥ unless the adversary queries the oracle on
k = sk. Since the view of A in the first i− 1 queries in Hyb0,i−1 is independent of sk and sk is uniform

over {0, 1}λ, the output is ⊥ with probability 1− 2−λ (namely, the secret key sk can be sampled after
the adversary’s query). In Hyb0,i, the output of GGM.Encode on the ith query is always ⊥, so the
output of GGM.Encode is statistically indistinguishable in the two experiments.

� GGM.Add: The addition oracle has identical behavior in Hyb0,i−1 and Hyb0,i.

� GGM.Test: Suppose an adversary makes a query to the GGM.Test oracle on k = pp and a handle
ξ ∈ {0, 1}λ. First, if k 6= pp or ξ /∈ T, then the output in both Hyb0,i−1 and Hyb0,i is ⊥, so it suffices to
consider the case where k = pp and ξ ∈ T. This means that ξ must have been added to T as a result
of a GGM.Encode query or as a result of a GGM.Add query. By construction, the only values in T from
the encoding algorithm correspond to the encodings of 1, ẑ1, . . . , ẑk, and ŝ. Any other encodings in T
must be the outcome of invoking GGM.Add on the existing elements. By an inductive argument over
the GGM.Add queries, we can argue that every valid handle ξ in T necessarily corresponds to a linear
function in the values 1, ẑ1, . . . , ẑk, and ŝ. Thus, any valid zero-test query the adversary makes can be
expressed as

f(ẑ1, . . . , ẑk, ŝ) :=
∑
i∈[k]

αiẑi + γŝ+ δ,

for some choice of scalars α1, . . . , αk, γ, δ ∈ Fp. If f ≡ 0 is the identically-zero polynomial, then the
output in both Hyb0,i−1 and Hyb0,i is “zero.” It suffices to consider the case where f 6≡ 0. In this case,
the output in Hyb0,i is always “nonzero,” while the output in Hyb0,i−1 depends on the value of f at the
concrete values of z1, . . . , zk, s sampled at the beginning of the experiment. Note that by construction,
the adversary’s view in Hyb0,i−1 in the first i − 1 queries is independent of the values of r, e, and s.

Thus, we can sample the values of r, e, s after the adversary has chosen its ith query.

First, let α ∈ Fkp be the vector whose components are α1, . . . , αk. Then, we can write

f(z1, . . . , zk, s) = zTα + γs+ δ = rTHα + eTα + (γ + cTα)s+ δ.

We can re-write f(z1, . . . , zk, s) as a linear polynomial g in the variables r, s, and e:

g(r, s, e) = rTHα + eTα + (γ + cTα)s+ δ = f(z1, . . . , zk, s)

We now consider two cases:

– Suppose that α = 0. In this case, the polynomial g(r, s, e) = γs+ δ. If g is not identically zero,
then at least one of γ, δ 6= 0. If γ 6= 0, this is a nonzero polynomial in s. Since s is uniform over Fp,
we apply Schwartz-Zippel to conclude that the probability that g(r, s, e) = 0 is 1/|Fp| = negl(λ).
With overwhelming probability, the zero-test oracle outputs “nonzero.” If γ = 0 and δ 6= 0, then
g is a constant nonzero polynomial, and the zero-test oracle always outputs “nonzero.”
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– Suppose that α 6= 0 but Hα = 0. Since (A, d) is a no instance, it must be the case that
wt(α) ≥ β ·d. We argue in this case that eTα is not identically-zero with overwhelming probability.
By construction, Pr[ei = 0] = 1− ε/d for each i ∈ [k], and each component ei is independent and
identically distributed. Let Sα = {i ∈ [k] : αi 6= 0} be the set of indices in α that are non-zero.
As argued above, |Sα| = wt(α) ≥ β · d. Thus, the probability that ei = 0 for all indices i ∈ Sα is
bounded by

Pr[∀i ∈ Sα : ei = 0] ≤ (1− ε/d)
wt(α) ≤ (1− ε/d)

βd ≤ e−βε = negl(λ),

since βε = ω(log n). Thus with overwhelming probability over the choice of e, there exists at
least one index i where ei 6= 0 and αi 6= 0. In this case, the polynomial g is a nonzero polynomial
in ei, and since ei is sampled uniformly over Fp, we apply Schwartz-Zippel to conclude that the
probability that g(r, s, e) = 0 is 1/|Fp| = negl(λ).

– Suppose that Hα 6= 0. Then, g(r, s, e) is a nonzero polynomial in r, and since r
r← F`p, by

Schwartz-Zippel, the probability that g(r, s, e) = 0 is 1/|Fp| = negl(λ).

We conclude that if the adversary queries GGM.Test on a polynomial that is not identically-zero in
the formal variables ẑ1, . . . , ẑk, ŝ, then the output of GGM.Test in Hyb0,i−1 will be “nonzero” with
overwhelming probability, which matches the behavior in Hyb0,i.

The claim now follows by a hybrid argument over the adversary’s queries.

Lemma 5.22. For all adversaries A making a polynomial number of queries to G, |Pr[Hyb1(A) = 1] −
Pr[Hyb2(A) = 1]| = negl(λ).

Proof. The only difference between hybrids Hyb1 and Hyb2 is that the challenger defers the sampling of st
until the very end. Certainly, the challenge ((pp, p, g), c, h1, . . . , hk) are identically distributed in the two
experiments (they do not depend on st). We take a similar query-by-query approach where st is sampled
after the first i queries of the adversary. To show that Hyb1,i−1 and Hyb1,i are statistically indistinguishable,

it suffices to show that the response to ith query is statistically indistinguishable in the two experiments.
Since the GGM.Setup and GGM.Encode are handled identically in the two experiments, it suffices to consider
GGM.Add and GGM.Test queries:

� Suppose the ith query is a GGM.Add query on inputs k, ξ1, ξ2. The behavior in the two experiments
are identical unless ξ1 = st or ξ2 = st in Hyb1,i−1. Since st is sampled after the first i− 1 queries, that
means that st is sampled independently of ξ1 and ξ2, so over the randomness of st, the probability that
st = ξ1 or st = ξ2 is 2/2λ = negl(λ).

� Suppose the ith query is a GGM.Test query on inputs k, ξ. By the same argument as in the previous
case, the behavior is identical unless ξ = st where st is sampled uniformly and independently of ξ. This
happens with probability 1/2λ = negl(λ) and the claim holds.

The claim now follows by a standard hybrid argument over the adversary’s oracle queries.

Lemma 5.23. For all adversaries A, Pr[Hyb2(A) = 1] = negl(λ).

Proof. Let π ∈ {0, 1}λ be the adversary’s output in this experiment. After the adversary outputs π, the

challenger samples st
r← {0, 1}λ, and with probability 1 − 2−λ, π 6= st. Then, there are two possibilities. If

π /∈ T, then the output of the experiment is 0. If π ∈ T, it maps to a polynomial that is independent of ŝ
(since the only mapping st 7→ ŝ that involves the formal variable ŝ is added after the adversary has output
π). In this case, π and st cannot correspond to identical polynomials, and the experiment outputs 0.

The claim now follows by combining Lemmas 5.21 to 5.23.
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A Succinct Non-Interactive Arguments and Laconic Arguments

We recall the definitions of a succinct non-interactive argument (SNARG) and a two-message laconic argu-
ment for arithmetic circuit satisfiability (which includes Boolean circuit satisfiability as a special case).

Definition A.1 (Succinct Non-Interactive Argument). Let C = {C`}`∈N be a family of arithmetic circuits
and let RC be the corresponding circuit satisfiability relation (and let LC be the associated language). A
succinct non-interactive argument (SNARG) for RC with completeness error c = c(λ) and soundness error
ε = ε(λ) is a tuple ΠSNARG = (SSNARG,PSNARG,VSNARG) with the following syntax:

� SSNARG(1λ) → (crs, st): On input the security parameter λ, the setup algorithm outputs a common
reference string crs and verification state st.
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� PSNARG(crs, x, w) → π: On input a common reference string crs, a statement x, and a witness w, the
prove algorithm outputs a proof π.

� VSNARG(st, x, π)→ {0, 1}: On input the verification state st, a statement x and a proof π, the verification
algorithm outputs a bit b ∈ {0, 1}.

Moreover, ΠSNARG should satisfy the following properties:

� Completeness: For all λ ∈ N and all (x,w) ∈ RC ,

Pr[VSNARG(st, x, π) = 1 | (crs, st)← SSNARG(1λ), π ← PSNARG(crs, x, w)] ≥ 1− c(λ).

When c(λ) = negl(λ), we say that ΠSNARG provides statistical completeness and when c(λ) = 0, we say
that ΠSNARG provides perfect completeness.

� Soundness: We say that ΠSNARG is non-adaptively sound if for all λ ∈ N, and all efficient provers P∗,
and all instances x /∈ LC ,

Pr[VSNARG(st, x, π) = 1 | (crs, st)← SSNARG(1λ), π ← P∗(1λ, crs, x)] ≤ ε(λ).

We say that ΠSNARG is adaptively sound if for all λ ∈ N, and all efficient provers P∗, we have that

Pr[VSNARG(st, x, π) = 1 ∧ x /∈ LC | (crs, st)← SSNARG(1λ), (x, π)← P∗(1λ, crs)] ≤ ε(λ).

� Optimal preprocessing succinctness: There exists universal polynomials p1, p2 (independent of C)
such that SSNARG and PSNARG run in time p1(λ, |C`|), VSNARG runs in time o(|C`|) · p2(λ, |x|), and the
proof size is O(λ).

Remark A.2 (Polylogarithmic Verification Complexity). Some definitions of succinct arguments impose a
more stringent efficiency requirement that the verification complexity is polylogarithmic in the size |C`| of
the classic NP verifier. Our focus in this work is minimizing the proof size, so our only requirement on the
verification complexity is that it should be sublinear in the size of the classic NP verifier (similar to the
original definition from [GW11]).

Remark A.3 (Public vs. Designated Verifier). We say a SNARG is publicly-verifiable if the verification
state st = ⊥ (namely, anyone can verify in this case). We say a SNARG is in the designated-verifier model
if only the holder of st is able to verify proofs (i.e., VSNARG takes st as input).

2-message laconic arguments. A 2-message laconic argument can be viewed as a SNARG with a
“statement-dependent” common reference string which the verifier sends to the prover in the first round.
The remaining properties are defined analogously to Definition A.1. We give the full definition below:

Definition A.4 (2-Message Laconic Argument). Let C = {C`}`∈N be a family of arithmetic circuits, and
let RC be the corresponding circuit satisfiability relation (and let LC be the associated language). A 2-
message laconic argument for RC with completeness error c = c(λ) and soundness error ε = ε(λ) is a tuple
ΠLA = (QLA,PLA,VLA) with the following syntax:

� QLA(1λ, x) → (q, st) : On input the security parameter λ and a statement x, the query algorithm
outputs a query q and a verification state st.

� PLA(q, x, w)→ π: On input a query q, a statement x, and a witness w, the prove algorithm outputs a
proof π.

� VLA(st, π)→ {0, 1}: On input the verification state st and a proof π, the verification algorithm outputs
a bit b ∈ {0, 1}.

Moreover, ΠLA = (QLA,PLA,VLA) should satisfy the following properties:
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� Completeness: For all λ ∈ N and all (x,w) ∈ RC ,

Pr[VLA(st, π) = 1 | (q, st)← QLA(1λ, x), π ← PLA(q, x, w)] ≥ 1− c(λ).

If c(λ) = negl(λ), then we say ΠLA is statistically correct and if c(λ) = 0, then we say that ΠLA is
perfectly correct.

� Soundness: For all λ ∈ N and all efficient provers P∗, and all instances x /∈ LC ,

Pr[VLA(st, π) = 1 | (q, st)← QLA(1λ, x), π ← P∗(1λ, q, x)] ≤ ε(λ).

� Optimal succinctness: There exist universal polynomials p1, p2 (independent of C) such that QLA

and PLA run in time p1(λ, |C`|), VLA runs in time o(|C`|) · p2(λ, |x|) and the length of the proof output
by PLA is O(λ).

A.1 The Bitansky et al. Compiler

In this section, we recall the compiler of Bitansky et al. [BCI+13] from linear PCPs to preprocessing SNARGs.
The general compiler proceeds in two main steps:

� The first step of the compiler constructs a 2-message linear interactive proof (LIP) from a linear PCP.
At a high level, a linear interactive proof is a standard interactive proof [GMR85], except that each
message from the prover to the verifier is a linear (or more generally, affine) function of the verifier’s
messages. We refer to [BCI+13, §2.3] for the formal definition. Bitansky et al. showed how to compile
any k-query linear PCP into a 2-message LIP by introducing a linear consistency check.

� The second step of the compiler takes a 2-message LIP and constructs from it a preprocessing SNARG
using a notion called linear-only encryption (i.e., an encryption scheme that only supports linear ho-
momorphism). The approach here is to encrypt the verifier’s query in the LIP using the linear-only en-
cryption scheme, and have the prover homomorphically compute its response to the encrypted queries.
Here, the linear-only property constrains the prover to only implement linear (or more generally, affine)
strategies, thus cryptographically enforcing the constraints of the LIP model. This step can also be in-
stantiated from weaker notions of linear-only such as linear targeted malleability [BSW12]. In the case
where the verifier’s message in the LIP is statement-independent, the verifier’s encrypted queries can
be generated in advance (as part of the common reference string); this yields a preprocessing SNARG.
Conversely, if the verifier’s message in the LIP is statement-dependent, then the resulting construction
yields a 2-message laconic argument. In Appendix C.1, we show that the ElGamal encryption scheme
over a group G (see Construction C.4) satisfies the necessary notion of linear targeted malleability to
instantiate the [BCI+13] compiler when the group G is modeled as a generic group.

As noted in [BCI+13, Remark 2.8], a linear PCP with one query is already a 2-message LIP, where the
prover’s message consists of a single field element. Thus, we can directly apply the second step of the
[BCI+13] compiler to a 1-query linear PCP without needing to first construct a linear interactive proof.
Below, we give the formal statements of the [BCI+13] compiler starting from 1-query linear PCPs (as this is
the only setting we require in this work). We start by recalling the definition of linear targeted malleability.

Definition A.5 (Additively Homomorphic Encryption). An additively homomorphic encryption scheme
over a ring Zq is a tuple of algorithms ΠEnc = (Setup,Encrypt,Decrypt,Add, ImVer) with the following syntax:

� Setup(1λ)→ (pk, sk): On input the security parameter λ, the setup algorithm outputs a public key pk
and a secret key sk.

� Encrypt(pk,m) → ct: On input the public key pk and a message m ∈ Zq, the encryption algorithm
outputs a ciphertext ct.
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� Decrypt(sk, ct)→ m: On input the secret key sk and a ciphertext ct, the decryption algorithm outputs
a message m ∈ Zq ∪ {⊥}.

� Add(pk, ct1, ct2)→ ct′: On input the public key pk and two ciphertexts ct1, ct2, the addition algorithm
outputs a new ciphertext ct′.

� ImVer(sk, ct)→ {0, 1}: On input the secret key sk and a ciphertext ct, the image-verification algorithm
outputs a bit b ∈ {0, 1}.

Moreover, an additively homomorphic encryption scheme should satisfy the following properties:

� Correctness: For every λ ∈ N and every message m ∈ Zq,

Pr

[
Decrypt(sk, ct) = m ∧ ImVer(sk, ct) = 1

∣∣∣∣ (pk, sk)← Setup(1λ);
ct← Encrypt(pk,m)

]
= 1.

� Additive homomorphism: For every λ ∈ N, every (pk, sk) in the support of Setup(1λ), and all
ciphertexts ct1, ct2 in the support of Encrypt(pk,m1) and Encrypt(pk,m2), respectively, where m1,m2 ∈
Zq,

Pr[Decrypt(sk, ct′) = m1 +m2 ∧ ImVer(sk, ct′) = 1 | ct′ ← Add(pk, ct1, ct2)] = 1.

� Semantic security: For any (sufficiently large) λ ∈ N, and every efficient and stateful adversary A,

Pr

b = b′

∣∣∣∣∣∣
(pk, sk)← Setup(1λ), (m0,m1)← A(1λ, pk);

b
r← {0, 1}, ctb ← Encrypt(pk,mb);

b′ ← A(ctb)

 ≤ 1

2
+ negl(λ).

In our case, we allow Decrypt and ImVer to additionally take as input a set M ⊆ Zq of potential messages,
and we only require the first two properties to hold for ciphertexts encrypting messages in M:

� Correctness: For every λ ∈ N, every set M⊆ Zq, and every message m ∈M,

Pr

[
Decrypt(sk, ct,M) = m ∧ ImVer(sk, ct,M) = 1

∣∣∣∣ (pk, sk)← Setup(1λ);
ct← Encrypt(pk,m)

]
= 1.

� Additive homomorphism: For every λ ∈ N, every set M ⊆ Zq, every (pk, sk) in the support
of Setup(1λ), and every ciphertexts ct1, ct2 in the support of Encrypt(pk,m1) and Encrypt(pk,m2),
respectively, where m1,m2 ∈ Zq, if m1 +m2 ∈M, then

Pr[Decrypt(sk, ct′,M) = m1 +m2 ∧ ImVer(sk, ct′,M) = 1 | ct′ ← Add(pk, ct1, ct2)] = 1.

Definition A.6 (Linear Targeted Malleability [BSW12, adapted]). An additively homomorphic encryption
scheme ΠEnc = (Setup,Encrypt,Decrypt,Add, ImVer) over Zq satisfies linear targeted malleability if for every
efficient adversary A and plaintext generator T , there is an efficient simulator S such that for any suffi-
ciently large λ ∈ N and auxiliary input z ∈ {0, 1}poly(λ), the outputs of the following two distributions are
computationally indistinguishable:

Real Distribution:

1. (pk, sk)← Setup(1λ)
2. (s, a1, . . . , am)← T (pk)
3. cti ← Encrypt(pk, ai) for all i ∈ [m]
4. ct′1, . . . , ct

′
k ← A(pk, ct1, . . . , ctm; z)

5. a′i ← Decrypt(sk, ct′) for all i ∈ [k]
6. If ImVer(ct′i) = 1 for all i ∈ [k], output(

pk, {ai}i∈[m], s, {a′i}i∈[k]

)
.

7. Otherwise, output ⊥.

Ideal Distribution:

1. (pk, sk)← Setup(1λ)
2. (s, a1, . . . , am)← T (pk)
3. cti ← Encrypt(pk, ai) for all i ∈ [m]
4. ct′1, . . . , ct

′
k ← A(pk, ct1, . . . , ctm; z)

5. (Π,b)← S(pk; z)
6. (a′1, . . . , a

′
k)T ← Π · (a1, . . . , am)T + b

7. If ImVer(ct′i) = 1 for all i ∈ [k], output(
pk, {ai}i∈[m], s, {a′i}i∈[k]

)
.

8. Otherwise, output ⊥.
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In our setting, we will also consider a restricted version of linear targeted malleability where we require the
above distributions to be indistinguishable only when the ciphertexts produced by the adversary correspond
to messages drawn from a restricted subset M ⊆ Zq. In this case, we augment the above definition by
also including the set M as an input to Decrypt and ImVer (Definition A.5). In this case, we say that ΠEnc

satisfies linear targeted malleability with respect to the target message space M.

Remark A.7 (Auxiliary Input Distributions). Definition A.6 requires the simulator to succeed for arbitrary
auxiliary inputs z ∈ {0, 1}poly(λ). This requirement is quite strong since z can be used to encode difficult
cryptographic problems that the simulator needs to solve in order to correctly simulate the output distribu-
tion [BCPR14]. However, in many scenarios, it suffices to just consider “benign” distributions for which the
definition plausibly holds. For instance, in our application to preprocessing SNARGs and laconic arguments,
it suffices to consider the setting where the auxiliary input z is a uniform string.

Preprocessing SNARGs from linear PCPs. We now recall the construction of preprocessing SNARGs
from any 1-query linear PCP in conjunction with an additively homomorphic encryption scheme satisfying
linear targeted malleability.

Construction A.8 (SNARG from 1-Query Linear PCP [BCI+13]). Let C = {C`}`∈N be a family of
arithmetic circuits over a finite field F and let RC be the associated circuit satisfiability relation. Let
ΠLPCP = (QLPCP,PLPCP,DLPCP) be a 1-query input-oblivious linear PCP for RC over F, and let ΠEnc =
(Setup,Encrypt,Decrypt,Add, ImVer) be an additively homomorphic encryption scheme over F. We construct
a SNARG ΠSNARG = (SSNARG,PSNARG,VSNARG) for RC as follows:

� SSNARG(1λ): On input the security parameter λ, the setup algorithm runs (pk, sk) ← Setup(1λ) and
(st′,qinp,q)← QLPCP where qinp ∈ Fn and q = (q1, . . . , q`) ∈ F`. Then, the setup algorithm computes
the ciphertexts cti ← Encrypt(pk, qi) for all i ∈ [`]. The setup algorithm outputs the CRS crs =
(pk, {cti}i∈[`]) and the secret verification state st = (sk, st′,qinp).

� PSNARG(crs,x,w): On input a common reference string crs =
(
pk, {cti}i∈[`]

)
, a statement x ∈ Fn,

and a witness w, the prover computes a proof π ← PLPCP(x,w) ∈ F`. It interprets {cti}i∈[`] as the

encryption of a vector q ∈ F` and homomorphically computes an encryption ct′ of the value qTπ. It
outputs the proof π = ct′.

� VSNARG(st,x, π): On input the verification state st = (sk, st′,qinp), the statement x ∈ Fn, and a proof
π = ct′, the verifier first checks that ImVer(sk, ct′) = 1 and outputs 0 if not. Otherwise, it computes
a← Decrypt(sk, ct′) and outputs DLPCP(st′,qT

inpx, a).

Theorem A.9 (Preprocessing SNARG from 1-Query Linear PCP [BCI+13], adapted). If ΠLPCP has sound-
ness error ε and ΠEnc satisfies linear targeted malleability, then Construction A.8 gives a preprocessing
SNARG for RC with perfect completeness and (non-adaptive) soundness error ε+ negl(λ).

Remark A.10 (Adaptive Soundness). Previously, Bitansky et al. [BCI+13] showed that if the underlying
encryption scheme ΠEnc in Construction A.8 satisfies the stronger extractability notion of linear-only security,
then the resulting SNARG satisfies adaptive soundness (where the malicious prover can choose the statement
to prove after seeing the CRS). In addition, we note that some specific instantiations of Construction A.8
can also be shown to satisfy adaptive soundness without necessarily requiring ΠEnc satisfy the linear-only
property. For example, we show in Appendix C.2 that Construction A.8 provides adaptive soundness when
ΠEnc is instantiated with the ElGamal encryption scheme over a group G that is modeled as a generic group.
In this setting of adaptively-sound SNARGs, the Gentry-Wichs lower bound [GW11] rules out the possibility
of basing security on a non-falsifiable assumption. As such, some kind of non-falsifiable assumption (e.g.,
the linear-only assumption) or working in an idealized model like the generic group model seems necessary
for the security analysis.
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Laconic arguments from linear PCPs. If the underlying linear PCP in Construction A.8 is input-
dependent, then we obtain a SNARG where the CRS is statement-dependent—that is, a 2-message laconic
argument. Thus, we can state the corresponding analog of Theorem A.9 for laconic arguments:

Theorem A.11 (Laconic Arguments from 1-Query Linear PCPs [BCI+13, adapted]). If ΠLPCP is an input-
dependent linear PCP with soundness error ε and ΠEnc satisfies linear targeted malleability, then Con-
struction A.8 yields a 2-message laconic argument for RC with perfect completeness and soundness error
ε+ negl(λ).

Remark A.12 (Bounded Linear PCPs). When a 1-query linear PCP has the property that all honestly-
generated proofs lie in a setM⊆ F known to the verifier (e.g.,Mmay be determined by the query-generation
algorithm), we can tweak Construction A.8 so that Theorems A.9 and A.11 hold as long the encryption
scheme ΠEnc in Construction A.8 satisfy linear targeted malleability with respect to M (Definition A.6).
Namely, we modify the verification algorithm to additionally include the setM as input to ImVer and Decrypt.
This means that the SNARG verifier only accepts if the prover’s response is an encryption of a message in
the set M, and moreover, every prover strategy that convinces the verifier to accept can be explained by
an affine function of the verifier’s encrypted queries. Thus, completeness and soundness follow by the same
argument as in the proofs of Theorems A.9 and A.11 from [BCI+13]. An immediate consequence is that if
we have a bounded linear PCP where honestly-generated responses lie in a polynomial-size subsetM⊆ |F|,
we can obtain a SNARG (or laconic argument) from an encryption scheme that satisfies linearly targeted
malleability with respect to polynomial-size subsets (e.g., the ElGamal encryption scheme (Construction C.4
and Theorem C.6)).

B Linear PCPs for Boolean Circuit Satisfiability

In this section, we review the classic construction of a linear PCP based on the Walsh-Hadamard code
(following the presentation from [BCI+13, BISW17]). We then show how to modify it to obtain a bounded
2-query linear PCP with either strong soundness or δ-honest verifier zero knowledge for the language of
Boolean circuit satisfiability.

B.1 A Linear PCP from the Hadamard Code

We begin by describing a 2-query linear PCP based on the Hadamard PCP from [ALM+98, IKO07], extended
to work over arbitrary finite fields F. Our presentation follows that from [BCI+13, BISW17]. We begin by
describing the 3-query variant from previous works [IKO07, BCI+13], and then show that a simple variant
allows us to combine two of the queries, yielding a 2-query linear PCP.

Construction description. Let C : Fnp × Fhp → Ftp be an arithmetic circuit of size s over a finite field Fp.
Let zi denote the value of the ith wire of C on an input x ∈ Fnp and a witness w ∈ Fhp . The wires zi for
i ∈ [n] correspond to the values of the input wires, and the wires zs−i+1 = 0 for i ∈ [t] correspond to the

values of the output wires. An honestly generated proof consists of a vector π ∈ Fs+s2p whose components
are the values z1, . . . , zs ∈ Fp and the products zizj ∈ Fp for all i, j ∈ [s]. If we define z = [z1, . . . , zs], then
we can write π = [z, z⊗ z]. To verify the proof, the verifier performs the following four consistency checks:

1. Consistency of π: each entry zizj is the product of the corresponding zi and zj .

2. Input consistency: zi = xi for all i ∈ [n].

3. Output consistency: zs−i+1 = 0 for all i ∈ [t].

4. Gate consistency: For each gate, the value of the output wire is consistent with the value of its
input wires. In particular, for addition gates with input wires i, j and output wire k, this corresponds
to checking that zi + zj − zk = 0. For the multiplication gates with input wires i, j and output wire k,
this corresponds to checking that zizj − zk = 0.
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These consistency checks can be verified as follows:

� To verify the first condition, the verifier requests a random linear combination of the zi’s and a cor-
responding linear combination of the product terms zizj ’s whose sum corresponds to the square of

the first query. Namely, the verifier samples v
r← Fsp and constructs query vectors q1 = [v, 0s

2

] and

q2 = [0s,v ⊗ v]. The verifier then checks the relation (qT
1π)2 ?

= qT
2π. If π is not of the form [z, z⊗ z]

for some z ∈ Fsp, then by the Schwartz-Zippel lemma, (qT
1π)2 = qT

2π with probability at most 2/p.

� The remaining consistency checks can be expressed as a linear system in terms of the variables z and

z⊗ z. Namely, we can define a matrix AC ∈ Fs×(s+s2)
p and a vector bC ∈ Fs−np where AC and bC are

functions of C only (and which can be computed in linear time from C), such that z is a satisfying
assignment to the wires of C only if

AC

[
z

z⊗ z

]
=

[
x

bC

]
.

To check that this system is satisfied, the verifier samples u
r← Fsp and checks the relation

uTAC

[
z

z⊗ z

]
?
= uT

[
x

bC

]
= uT

xx + uT
bbC

where ux ∈ Fnp denotes the first n components of u and ub denotes the other s − n components.

Concretely, the verifier sets q3 ← uTAC and checks the relation qT
3π

?
= uT

xx + uT
bbC . Assuming that

π is consistent (i.e., of the form [z, z ⊗ z] for some z ∈ Fsp), then by the Schwartz-Zippel lemma, the
verifier will reject a inconsistent wire assignment with probability at least 1/p.

As described, the verifier prepares three queries q1,q2,q3 and receives responses a1 = qT
1π, a2 = qT

2π, and

a3 = qT
3π and checks that a2

1
?
= a2 and a3

?
= uT

xx + uT
bbC . We make several observations:

� The decision procedure is fully linear and only depends on uT
x,u

T
bbC .

� The responses a2 and a3 are used in a linear manner at the decision procedure, and depend on
independently-sampled randomness. Thus, instead of checking them independently, we can instead
check the joint relation

a2
1 − a2 + (a3 − uT

xx− uT
bbC)

?
= 0. (B.1)

By the Schwartz-Zippel lemma, if either of the two verification relations does not hold, then Eq. (B.1)
is nonzero with probability at least 2/p. The key is that we can check Eq. (B.1) using just two queries

by setting q̄1 = q1 and q̄2 = q3 − q2 and testing ā2
1 + ā2 − uT

xx − uT
bbC

?
= 0, where ā1 = q̄T

1π and
ā2 = q̄T

2π. This precisely corresponds to Eq. (B.1) above.

We give the formal construction below:

Construction B.1 (2-Query Linear PCP from the Walsh-Hadamard Code). Let C : Fnp × Fhp → Ftp be an
arithmetic circuit of size s over Fp. We construct a 2-query linear PCP ΠLPCP = (QLPCP,PLPCP,DLPCP) for
RC as follows:

� QLPCP: Let AC ∈ Fs×(s+s2)
p and bC ∈ Fs−np be the circuit-specific linear system that correspond to the

circuit consistency checks. The query algorithm then computes two query vectors as follows (q1,q2):

1. Sample v
r← Fsp. Set qT

1 = [vT, 0s
2

].

2. Sample u
r← Fsp. Let qT

2 = uTAC − [0s, (v ⊗ v)T], and ux ∈ Fnp be the first n components of u,
and ub ∈ Fs−np be the rest of the components of u.
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The query sets qinp = ux and Q ∈ F(s+s2)×2
p to be the matrix whose columns are q1 and q2. It also

computes uC ← uT
bbC and sets st = uC . Finally, it outputs st, qinp, and Q.

� PLPCP(x,w): On input (x,w) ∈ Fnp ×Fhp where C(x,w) = 0, the prover computes the values z1, . . . , zs

for the wires of C. It sets z = [z1, . . . , zs] ∈ Fsp and outputs the proof π = [z, z⊗ z]T ∈ Fs+s2p .

� DLPCP(st, ainp,a) On input the state st = uC , an input-dependent response ainp, and a vector of re-
sponses a = (a1, a2) ∈ F2

p, the verifier outputs 1 if a2
1 + a2 = ainp + uC , and 0 otherwise.

Theorem B.2 (Completeness). Construction B.1 satisfies perfect completeness.

Proof. Take any x,w where C(x,w) = 0t. Let (st,qinp,Q)← QLPCP and π ← PLPCP(x,w). By construction,
π = [z, z⊗ z], where z is the wire values corresponding to C(x,w). Let a1 ← qT

1π and a2 ← qT
2π, where q1

and q2 are the columns of Q. Then,

a2
1 + a2 = (vTz)2 + uTACπ − (v ⊗ v)T(z⊗ z) = (vTz)2 + uTACπ − (vTz)(vTz) = uTACπ.

By construction of AC , if π = [z, z⊗ z]T for a valid wire labeling, then

uTACπ = uT
xx + uT

bbC = ainp + uC .

Theorem B.3 (Strong Soundness). Construction B.1 has strong soundness error 2/p.

Proof. Take any statement x /∈ L and consider any affine proof strategy π∗ = [π∗1 ,π
∗
2 ] ∈ Fs+s2p , where

π∗1 ∈ Fsp and π∗2 ∈ Fs2p and δ∗1 , δ
∗
2 ∈ Fp. Let (st,qinp,Q) ← QLPCP, where st = uC and qinp = ux. Let q1,q2

be the columns of Q. Write qT
1 = [vT, 0s

2

] and qT
2 = uTAC − [0s, (v ⊗ v)T]. Consider a1 ← qT

1π + δ1 and
a2 ← qT

2π + δ2. The verifier accepts if

a2
1 + a2 − ainp − uC = (vTπ∗1 + δ∗1)2 + uTACπ

∗ − (v ⊗ v)Tπ∗2 + δ∗2 − uT
xx− uT

bbC = 0. (B.2)

We consider two possibilities:

� Suppose that π∗2 6= π∗1 ⊗ π∗1 . Then Eq. (B.2) is not identically zero in the variables v.

� Suppose that π∗ = [z∗, z∗ ⊗ z∗] for some z∗ ∈ Fsp. Since x /∈ L, there is no consistent labeling of the
wires of C with input x and output values 0t (i.e., no value z∗ can satisfy the input, output, and circuit
consistency constraints). This means that ACπ

∗ 6= [x,bC ]T, and so uTACπ
∗ − uT

xx − uT
b bC is not

the identically zero polynomial in the variables u. Thus, in this case, Eq. (B.2) is not identically zero
in the variables u.

In both cases, the verification relation Eq. (B.2) is not identically zero in either u or v. Since these variables
are sampled uniformly from Fp, and Eq. (B.2) is a polynomial of total degree 2, we appeal to Schwartz-Zippel
to conclude that over the verifier’s choice of randomness, Eq. (B.2) holds with probability at most 2/p, and
soundness follows. We can apply the same analysis as above to argue strong soundness (with the same
soundness error).

Remark B.4 (Reducing Query Length). We note that in the Hadamard LPCP from Construction B.1, the
proof π has the form π = [z, z ⊗ z]. By default, z ⊗ z contains both the value of zizj as well as the value
of zjzi whenever i 6= j. We can reduce the query size slightly by only including one copy of each pairwise
product. This allows us to reduce the query length from s+ s2 to s+ s+ s(s− 1)/2 = (s2 + 3s)/2.

Remark B.5 (Honest-Verifier Zero Knowledge). As noted in [BCI+13, Remark A.4], it is straightforward
to obtain a perfect honest-verifier zero-knowledge linear PCP from the Hadamard PCP by introducing a
dummy wire to the circuit and having the prover assigning the wire a random value. The verifier then
performs all of the checks with respect to this new circuit. We refer to [BCI+13, Remark A.4] for more
details.
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Remark B.6 (Knowledge Soundness). We further note that Construction B.1 satisfies knowledge soundness
(Definition 2.7). From Theorem B.3 it is clear that any linear strategy π∗, δ∗ that convinces DLPCP with
probability greater than ε must encode a satisfying assignment to the circuit C (with δ∗ = 0). Therefore,
the extractor E can simply query π∗ with |w| unit vectors to recover the witness w.

Corollary B.7 (2-Query Hadamard Linear PCP). Let C : Fnp × Fhp → Ftp be an arithmetic circuit of size s
over Fp. Then there exists a 2-query, degree-2 linear PCP with perfect zero-knowledge for the relation RC
with query length t = (s2 + 3s)/2 = O(s2) and strong soundness error 2/p.

B.2 Bounded Linear PCP from the Hadamard Code

It is straightforward to adapt the Hadamard linear PCP from Construction B.1 to obtain a bounded linear
PCP. Here, we will focus on the particular setting of Boolean circuits, so the input and output wires of the
circuit are binary. Our construction naturally generalizes to general circuits over the integers with bounded
wire values (provided that each gate in the circuit computes a quadratic function of its inputs). Below, we
present our construction for Boolean circuits:

Construction B.8 (2-Query Bounded Linear PCP). Let C : {0, 1}n×{0, 1}h → {0, 1} be a Boolean circuit
of size s. Let b1, b2 : N → N be bound functions. We construct a 2-query bounded linear PCP ΠLPCP =
(QLPCP,PLPCP,DLPCP) over Fp for the relation RC as in Construction B.1, but with the following differences:

� Circuit consistency checks: In Construction B.1, we defined circuit consistency checks for arithmetic
circuits over Fp where the gates were addition and multiplication gates over Fp and the wire values
were arbitrary Fp elements. Here, we work with Boolean circuits so that in the honest execution, all of
the wire values are binary valued. In Table 3, we describe how to implement linear consistency checks
for several standard Boolean gates. We assume that each gates has exactly two input wires. Using

the same procedure as Construction B.1, we then define the circuit consistency check AC ∈ Fs×(s+s2)
p

and bC ∈ Fs−np for a Boolean circuit C. Note that we include the same input-consistency and output-
consistency checks as before.

� Bounded query domain: The query-generation algorithm QLPCP now takes an additional bound

parameter τ ∈ N and instead of sampling u,v from the full domain, it instead samples u,v
r←

[−τ/2, τ/2]s. The verification state st also includes the bound parameter τ .

� Bound checking at verification time: On input st = (uC , τ), an input-dependent response ainp,
and a vector of responses a = (a1, a2) ∈ F2

p, the verifier additionally checks that a1 ∈ [−b1(τ), b1(τ)]
and a2 ∈ [−b2(τ), b2(τ)].

Everything else is constructed as in Construction B.1.

Theorem B.9 (Completeness). Construction B.8 satisfies perfect completeness.

Proof. Same as the proof of Theorem B.2.

Theorem B.10 (Soundness). Construction B.8 has strong soundness error 2/τ .

Proof. Follows from the same argument as in the proof of Theorem B.3. The only difference is that u,v are
now sampled uniformly from an interval of size τ rather than |Fp|.

Remark B.11 (Knowledge Soundness). Construction B.8 has 2/τ knowledge soundness (Definition 2.7).
The argument is identical to the argument in Remark B.6

Theorem B.12 (Bounded). Construction B.8 is a bounded linear PCP where b1(τ) = sτ/2 and b2(τ) =
2(b1(τ))2. Moreover, for any ε > 0, Construction B.8 is bounded with respect to bound functions b′1(τ) =
τ
√
s/2 · ln(2/ε) and b′2(τ) = 2(b′1(τ))2 with probability at least 1− ε.
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Gate Type Input Wires Output Wire Linear Checks

AND zi, zj zk zk − zij = 0
NOT zi zk zi + zk = 1
OR zi, zj zk zk − zi − zj + zij = 0

XOR zi, zj zk zk − zi − zj + 2zij = 0
NAND zi, zj zk zk + zij = 1

Table 3: Linear checks for common Boolean gates. We assume that each gate has two input wires and a
single output wire. It is straightforward to extend this approach to arbitrary Boolean gates whose output
value can be expressed as a quadratic function of its input values. Recall that the Hadamard linear PCP
consists of a vector of wire labels z together with their pairwise products z ⊗ z. We write zi to denote the
ith wire label in z and zij to denote the entry in z⊗ z that corresponds to the product zizj .

Proof. Take any x ∈ {0, 1}n and w ∈ {0, 1}h where C(x,w) = 1. Let (st,qinp,Q)
r← QLPCP(τ) and π ←

PLPCP(x,w) where st = (uC , τ). By construction, π = [z, z ⊗ z], where z ∈ Fsp are the wire labels of circuit
C on input (x,w). Since C is a Boolean circuit, this means that every value in π is binary-valued. Next, let
q1,q2 denote the two columns of Q. By construction q1 contains exactly s nonzero entries, each of which
is drawn from the interval [−τ/2, τ/2]. Thus, qT

1π ∈ [−sτ/2, sτ/2]. By completeness, we know that the
verification relation is satisfied, in which case

qT
2π = qT

inpx + uC − (qT
1π)2.

Here qT
inpx = uT

xx and uC = uT
bbC , where each component of ux and ub are sampled from the interval

[−τ/2, τ/2]. For the Boolean gates in Table 3, we have that each component of bC is binary-valued, as is
the input x. Thus, if we work over the integers, then we can bound

|qT
2π| ≤ |qT

inpx|+ |uC |+ |qT
1π|2 ≤ sτ + (b1(τ))2 = 2b1(τ) + (b1(τ))2 ≤ 2(b1(τ))2.

Thus, Construction B.8 is bounded with respect to b1, b2. For the second part of the claim, it suffices to
bound the value of qT

1π. This follows by a straightforward application of Hoeffding’s inequality. Namely, for
any bound B > 0, and working over the integers, we have

Pr[|qT
1π| ≥ B] ≤ 2 exp

(
− 2B2

wt(q1) · τ2

)
≤ 2 exp

(
−2B2

sτ2

)
.

Substituting B = b′1(τ), we have

Pr[|qT
1π| ≥ b′1(τ)] ≤ 2 exp

(
−2τ2s/2 · ln(2/ε)

sτ2

)
= ε.

The claim then follows by a similar argument as before.

B.3 Zero-Knowledge via Noise Smudging

Our bounded linear PCP from Construction B.8 does not provide zero-knowledge (even against honest
verifiers). Using the same idea from [BCI+13] (see Remark B.5), we can adapt Construction B.8 to satisfy
δ-HVZK while remaining a bounded linear PCP. Namely, as in [BCI+13], we introduce a dummy wire to the
circuit, and the prover assigns a random value (chosen from a small interval) when constructing the proof.
For completeness, we provide the full construction below:

Construction B.13 (2-Query Bounded Linear PCP with Zero-Knowledge). Fix a parameter δ > 0. Let
b1, b2 be bound functions (that depend on both the bound parameter τ and the zero-knowledge parameter
δ). Let C : {0, 1}n × {0, 1}h → {0, 1} be a Boolean circuit of size s. We construct a 2-query bounded linear
PCP ΠLPCP = (QLPCP,PLPCP,DLPCP) over a finite field Fp as follows:

55



� QLPCP(τ): On input the bound parameter τ , the query-generation algorithm samples u,v′
r← [−τ/2, τ/2]s,

and defines v = [(v′)T, 1]T ∈ Fs+1
p . Let ux ∈ Fnp be the first n components of u and ub ∈ Fs−np

be the remaining s − n components of u. The query algorithm constructs the circuit consistency

check matrix AC ∈ Fs×((s+1)+(s+1)2)
p and vector bC ∈ Fs−np as in Construction B.8. It defines the

queries qT
1 = [vT, 0(s+1)2 ] ∈ F(s+1)+(s+1)2

p and qT
2 = uTAC − [0s+1, (v ⊗ v)T] ∈ F(s+1)+(s+1)2

p . Let

Q ∈ F((s+1)+(s+1)2)×2
p be the matrix whose columns are q1 and q2. It computes uC ← uT

bbC , and
outputs st, qinp = ux, and Q.

� PLPCP(τ, x, w): On input (x,w) ∈ {0, 1}n × {0, 1}h, the prover evaluates C(x,w) and sets z1, . . . , zs
to be the wire values for C. Let B = 2τ

√
s/2 · ln(4/δ)/δ. The prover samples a “smudging factor”

zs+1
r← [−B,B]. Let z ∈ Fs+1

p be the vector whose elements are z1, . . . , zs, zs+1. The prover outputs

the proof π = [z, z⊗ z] ∈ F(s+1)+(s+1)2

p .

� DLPCP(st, ainp,a): On input the verification state st = (τ, uC), an input-dependent response ainp,
and responses a = (a1, a2) ∈ F2

p, the verifier first checks that a1 ∈ [−b1(τ, δ), b1(τ, δ)] and a2 ∈
[−b2(τ, δ), b2(τ, δ)]. If both checks pass, the verifier outputs 1 if a2

1 + a2 = ainp + uC , and 0 otherwise.

Theorem B.14 (Completeness). Construction B.13 satisfies perfect completeness.

Proof. Same as the proofs of Theorems B.2 and B.9.

Theorem B.15 (Soundness). Construction B.13 has soundness error 2/τ .

Proof. Same as the proof of Theorem B.10.

Remark B.16. Construction B.13 has knowledge soundness 2/τ . The argument is identical to the argument
at Remark B.6

Remark B.17 (Strong Soundness of Construction B.13). Construction B.13 does not provide strong sound-
ness. Notably, a malicious prover can choose the smudging factor zs+1 to be outside the allowable range.
By design, zs+1 adds a linear shift to the first response a1. Since the verifier checks whether a1 ∈
[−b1(τ, δ), b1(τ, δ)], there exist values of zs+1 near the “border” that will cause the honest verifier to re-
ject with probability between 1 and 2/τ , which violates strong soundness.

Theorem B.18 (Bounded). Construction B.13 is a bounded linear PCP with bound functions b1(τ, δ) =
sτ/2 + 2τ

√
s/2 · ln(4/δ)/δ, and b2(τ) = 2(b1(τ))2. Moreover, for any ε > 0, Construction B.13 is bounded

with respect to bound functions b′1(τ) = τ
√
s/2
(√

ln(2/ε) + 2/δ
√

ln(4/δ)
)

and b′2(τ) = 2(b1(τ))2 with proba-
bility at least 1− ε.

Proof. Same as the proof of Theorem B.12, except the value of a1 can now increase by the magnitude of the
smudging factor zs+1, which is sampled from a bounded interval with magnitude at most 2τ

√
s/2 · ln(4/δ)/δ.

The claim follows.

Theorem B.19 (δ-HVZK). Construction B.13 satisfies δ-HVZK.

Proof. Our analysis relies on the following standard noise smudging lemma.

Lemma B.20 (Noise Smudging (cf. [AJL+12])). Let B1 and B2 be positive integers. Let x ∈ [−B1, B1] be

a fixed integer. Sample y
r← [−B2, B2]. Then, the distribution of y is ε-close to the distribution of y + x for

ε = B1/B2.

We construct a simulator S as follows:

� On input a bound parameter τ ∈ N and a statement x ∈ L, sample (st,qinp,Q) ← QLPCP(τ), where
st = uC . Let ainp ← qT

inpx.
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� Sample ã1
r← [−B,B] where B = 2τ

√
s/2 · ln(4/δ)/δ and set ã2 ← ainp+uC−a2

1. Let ã = (ã1, ã2) ∈ F2
p.

� Output (st,qinp,Q, ainp, ã).

By construction, the simulator samples st,qinp,Q, ainp from exactly the same distribution as in the real
distribution. It suffices to argue that the simulated set of responses ã is properly distributed. In the real
distribution, a ← QTπ where π ← PLPCP(τ, x, w). First, since x ∈ L, in the real distribution, the verifier
accepts which means that a2

1 + a2 = ainp + uC . This means that as long as a1 and ã1 are δ-close, then the
real and simulated distributions are δ-close. We consider the distribution of a1 in the real distribution. In
the real distribution

a1 = qT
1π = (v′)Tz′ + zs+1,

where z′ ∈ Fsp denotes the first s components of z. By the same analysis as in the proof of Theorem B.12,

we have that for B′ = τ
√
s/2 · ln(4/δ),

Pr[|(v′)Tz′| ≥ B′] ≤ δ/2.

Thus, with probability 1 − δ/2, (v′)Tz′ ∈ [−B′, B′]. Since B′/B = δ/2, we can apply Lemma B.20 to
conclude that over the randomness of zs+1, the distribution of a1 = (v′)Tz′ + zs+1 in the real distribution is
(δ/2)-close to the distribution of ã1 in the simulated distribution (where a1 is uniform over [−δ′, δ′]).

C The Generic Group Model

In this work, we analyze the security of some of our constructions in the generic group model [Nec94, Sho97].
In the generic group model, access to the group elements is replaced by “handles.” An adversary in the generic
group model is also given access to a stateful oracle which implements the group operation. The generic group
oracle maintains internally a mapping from handles to group elements, which it uses in order to consistently
answer the oracle queries. Thus, when a scheme is shown to satisfy some security property in the generic
group model, it means that no efficient adversary that only applies the group operations as a black-box can
break that security property. Our presentation is adapted from similar definitions from [Zim15, KLM+18].

Definition C.1 (Generic Group Oracle). A generic group oracle is a stateful oracle G that responds to
queries GGM.Setup,GGM.Encode,GGM.Add,GGM.Test as follows:

� On a query GGM.Setup(1λ), the generic group oracle samples two fresh nonces pp, sk
r← {0, 1}λ and

a prime p. It outputs (pp, sk, p). The oracle stores the values generated, initialize an empty table
T← {}, and set the internal state so subsequent invocations of GGM.Setup fail (with output ⊥).

� On a query GGM.Encode(k, x) where k ∈ {0, 1}λ, x ∈ Fp, the oracle checks that k = sk (returning ⊥
if the check fails). The oracle then generates a fresh nonce ξ

r← {0, 1}λ, adds the entry ξ 7→ x to the
table T, and replies with ξ.

� On a query GGM.Add(k, ξ1, ξ2) where k, ξ1, ξ2 ∈ {0, 1}λ, the oracle checks that k = pp, that the
handles ξ1, ξ2 are present in its internal table T, and are mapped to values x1, x2 ∈ Fp, respectively

(returning ⊥ otherwise). If the checks pass, the oracle samples a fresh handle ξ
r← {0, 1}λ and adds

the entry ξ 7→ (x1 + x2) to T, and replies with ξ. The addition oracle can be used to implement scalar
multiplication by arbitrary Fp elements via repeated doubling.

� On a query GGM.Test(k, ξ) where k, x ∈ {0, 1}λ, the oracle checks that k = pp, that the handle ξ is
present in T, and that ξ maps to some value x ∈ Fp (returning ⊥ otherwise). If the checks pass, the
oracle returns “zero” if x = 0 ∈ Fp and “nonzero” otherwise.
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Remark C.2 (Unique Encodings). Many formulations, including [Sho97], model the generic group using a
random injective function σ : Fp → {0, 1}λ. In this formulation, every value in Fp has a unique encoding,
and there is no need for an explicit GGM.Test procedure (GGM.Test would just correspond to equality of
bitstrings). Our formulation in Definition C.1 (which follows [Zim15, KLM+18]) samples a new encoding on
every query and provides an explicit GGM.Test procedure for checking whether an element is an encoding of
0 (or equivalently, whether two elements are equal). We can implement a generic group model with unique
encodings by using the GGM.Test procedure to test equality against the existing entries in the table T after
each GGM.Encode and GGM.Add query, and returning the previously-computed handle if it is already present
in the table. Otherwise, a new handle is sampled as usual. This transformation incurs a quadratic overhead
in the number of queries. Thus, without loss of generality, we can assume fresh handles are output by
GGM.Encode and GGM.Add, and equality-checking is handled through an explicit algorithm GGM.Test.

Remark C.3 (Oracle Queries as Formal Polynomials [Zim15, Remark 2.11, adapted]). Although the generic
group oracle is defined formally in terms of “handles” (Definition C.1), it is oftentimes more conducive to
regard each oracle query as referring to a formal query polynomial. The formal variables in this formal query
polynomial are specified by the expressions supplied to the GGM.Encode oracle (as determined by the details
of the construction), and the adversary can construct terms that refer to new polynomials by making queries
to the group operation oracle GGM.Add. Rather than operating on a “handle,” each valid GGM.Test query
refers to a formal query polynomial, and the result of the query is “zero” if the polynomial evaluates to zero
when its variables are instantiated with the joint distribution over their values in Fp as generated in the real
security game.

C.1 Linear Targeted Malleability of ElGamal

In this section, we show that the ElGamal encryption scheme [ElG84] satisfies linear targeted malleability
(Definition A.6) in the generic group model. We begin by recalling the ElGamal encryption scheme where
the message is encoded in the exponent.

Construction C.4 (ElGamal Encryption [ElG84]). Let GroupGen be a prime-order group generation algo-
rithm. The ElGamal encryption scheme ΠEnc = (Setup,Encrypt,Decrypt,Add, ImVer) with message space Fp
is defined as follows:

� Setup(1λ): On input the security parameter λ, the setup algorithm computes (G, p, g)← GroupGen(1λ),

samples x
r← Fp, and computes h← gx. It outputs the public key pk = (G, p, g, h) and the secret key

sk = (G, p, g, x). The message space for the ElGamal encryption scheme is Fp.

� Encrypt(pk, a): On input the public key pk = (G, p, g, h) and a message a ∈ Fp, the encryption algorithm

samples r
r← Fp and outputs the ciphertext ct = (gr, hrga).

� Decrypt(sk, ct,M): On input a secret key sk = (G, p, g, x), a ciphertext ct = (ct1, ct2) and a set of
candidate messages M ⊆ Fp, the decryption algorithm checks whether there exists a ∈ M such that
ga = ct2/ct

x
1 . If so, it outputs a; otherwise, it outputs ⊥.

� Add(pk, ct1, ct2): On input the public key pk = (G, p, g, h) and ciphertexts ct1 = (gr1 , hr1ga1), ct2 =
(gr2 , hr2ga2), the addition algorithm outputs ct′ = (gr1gr2 , (hr1ga1) · (hr2ga2)).

� ImVer(sk, ct,M): On input a secret key sk, a ciphertext ct and a set of candidate messages M ⊆ Fp,
the image-verification algorithm outputs 1 if Decrypt(sk, ct,M) 6= ⊥ and 0 otherwise.

Theorem C.5 (Correctness and Security of ElGamal [ElG84]). Construction C.4 is correct, and moreover,
if the Decisional Diffie-Hellman (DDH) assumption holds with respect to GroupGen, then Construction C.4
is semantically secure.

Theorem C.6 (Linear Targeted Malleability of ElGamal). The ElGamal encryption scheme ΠEnc from
Construction C.4 satisfies linear targeted malleability with respect to any target message space M where
|M| = poly(λ) (Definition A.6) in the generic group model.
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Proof. Take any efficient adversary A and plaintext generator T for the linear targeted malleability game.
We construct an efficient simulator S that works as follows:

1. At the beginning of the security game, the simulator receives the public key pk and (possibly) auxiliary
input z. In the generic group model, the public key consists of pk = (pp, p, g, h) where pp, g, h ∈ {0, 1}λ
are arbitrary bit strings. The simulator initializes an empty table T and adds mappings g 7→ 1 and
h 7→ x̂, where x̂ is a formal variable (that represents the secret key of the encryption scheme, unknown
to the simulator).

2. For each i ∈ [m], the simulator samples cti,1, cti,2
r← {0, 1}λ and sets cti ← (cti,1, cti,2). The simulator

also adds mappings cti,1 7→ r̂i and cti,2 7→ r̂ix̂+ âi, where r̂1, . . . , r̂m and â1, . . . , âm are formal variables
representing the encryption randomness and the messages.

3. The simulator starts running the adversary A on input pk = (pp, p, g, h), ct1, . . . , ctm, and z. The
simulator S will simulate the generic group oracle queries for A as follows:

� GGM.Setup: The simulator replies to A with ⊥.

� GGM.Encode: The simulator replies to A with ⊥.

� GGM.Add: On input a key k and handles ξ1, ξ2 ∈ {0, 1}λ, the simulator checks that k = pp
and that ξ1, ξ2 are present in T and mapped to formal polynomials f1, f2 over Fp (returning ⊥
otherwise). If the checks pass, the oracle samples a fresh handle ξ

r← {0, 1}λ and adds the entry
ξ 7→ (f1 + f2) to T and replies with ξ.

� GGM.Test: On input a key k and a handle ξ ∈ {0, 1}λ, the simulator checks that k = pp, that ξ is
present in T, and mapped to a formal polynomial f over Fp (returning ⊥ otherwise). If the checks
pass, the oracle outputs “zero” if f ≡ 0 is the identically-zero polynomial over Fp and “nonzero”
otherwise.

4. At the end of the experiment, the adversary outputs a collection of ciphertexts ct′1, . . . , ct
′
k, where each

ct′i = (ct′i,1, ct
′
i,2). The simulator first checks that each ct′i,1 7→ fi,1 and ct′i,2 7→ fi,2 in T. If this is not

the case for any i ∈ [k], the simulator outputs ⊥.

5. By construction of the simulator, every fi,1 and fi,2 can be expressed as a linear function in the

variables r̂1, . . . , r̂m, â1, . . . , âm, x̂. The simulator now checks that fi,2 − x̂fi,1 ≡
(∑

j∈[m] αi,j âj

)
+ βi,

for some choice of scalars αi,1, . . . , αi,m, βi ∈ Fp. If this relation does not hold for any i ∈ [k], then the
simulator outputs ⊥. Otherwise, the simulator sets the ith row of Π ∈ Fk×mp to [αi,1, . . . , αi,m] and

the ith component of b ∈ Fkp to βi.

6. Output the matrix Π ∈ Fk×mp and the vector b ∈ Fkp.

We now show that the real distribution and the simulated distributions are computationally indistinguishable
when GroupGen is modeled as a generic group G. To do so, we use a hybrid argument:

� Hyb0: This is the real distribution in Definition A.6. Namely, the experiment proceeds as follows:

1. The challenger samples (pp, sk′, p) ← GGM.Setup(1λ), g ← GGM.Encode(sk, 1), x
r← Fp, and

h← GGM.Encode(sk′, x). It then sets pk = (pp, p, g, h) and sk = (pp, p, g, sk′, x).

2. The challenger computes (s, a1, . . . , am) ← T (pk) and cti ← Encrypt(pk, ai) for each i ∈ [m].

Namely, for each i ∈ [m], the challenger samples ri
r← Fp, and computes cti,1 to be an encoding

of ri and cti,2 to be an encoding of rix+ ai (using the public components pp, g, h and queries to
GGM.Add). It sets cti = (cti,1, cti,2). In particular, cti,1 7→ ri and cti,2 7→ rix+ ai in the internal
table T maintained by the generic group oracle.
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3. The challenger sends the public key pk, the ciphertexts ct1, . . . , ctm, and the auxiliary information
z to the adversary A. The adversary is also given access to the generic group oracles GGM.Setup,
GGM.Encode, GGM.Add, GGM.Test.

4. At some point, the adversary outputs ct′1, . . . , ct
′
k.

5. If ImVer(sk, ct′i,M) 6= 1 for any i ∈ [k], the challenger outputs ⊥. In the case of the ElGamal
scheme, this means the challenger outputs ⊥ unless ct′i = (ct′i,1, ct

′
i,2) where ct′i,1 7→ r′i and

ct′i,2 7→ r′ix + a′i in the internal table T maintained by the generic group oracle for some r′i ∈ Fp
and a′i ∈ X . If ct′i satisfy this requirement for all i ∈ [k], then the output of the experiment is
(pk, {ai}i∈[m], s, {a′i}i∈[k]).

� Hyb1: Same as Hyb0 except the challenger computes the ciphertext components cti,1, cti,2 by directly
encoding the value of ri and rix + ai, respectively, using the secret key sk′. In other words, the
challenger computes cti,1 ← GGM.Encode(sk′, ri) and cti,2 ← GGM.Encode(sk′, rix+ ai).

� Hyb2: Same as Hyb1, except the challenger implements the generic group oracles according to the
specification of S. In particular, the challenger proceeds as follows in this experiment:

1. The challenger runs (pp, sk′, p)← GGM.Setup(1λ). Then, it samples x
r← Fp, initializes an empty

table T, samples two strings g, h
r← {0, 1}λ, and adds the mappings g 7→ 1 and h 7→ x̂ to T. Here

x̂ is a formal variable representing the secret key. The challenger sets pk = (pp, p, g, h).

2. The challenger computes (s, a1, . . . , am) ← T (pk). For each i ∈ [m], it samples ri
r← Fp and

cti,1, cti,2
r← {0, 1}λ. It adds mappings cti,1 7→ r̂i and cti,2 7→ r̂ix̂ + âi, where r̂1, . . . , r̂m and

â1, . . . , âm are formal variables for the encryption randomness and the message, respectively.

3. The challenger sends the public key pk, the ciphertexts ct1, . . . , ctm, and the auxiliary information
z to A. It then responds to the generic group oracle queries using the same procedure as the
simulator S (with respect to its own table T).

4. At the end of the experiment, the adversary outputs ciphertexts ct′1, . . . , ct
′
k.

5. The challenger now scans through the values in T and instantiates each of the formal variables
x̂, r̂1, . . . , r̂m, â1, . . . , âm with their real values x, r1, . . . , rm, a1, . . . , am, respectively. The output
of Hyb2 is then computed using the same procedure as in Hyb1.

� Hyb3: Same as Hyb2 except after the adversary outputs ct′1, . . . , ct
′
k, instantiating the formal variables

x̂, r̂1, . . . , r̂m, â1, . . . , âm with their values x, r1, . . . , rm, a1, . . . , am, and verifying ImVer(sk, ct′i,M) = 1
for all i ∈ [k], the challenger computes the output using the following procedure:

1. The challenger parses ct′i as (ct′i,1, ct
′
i,2), and checks that ct′i,1 7→ fi,1 and cti,2 7→ fi,2 in T. It then

checks that fi,2 − x̂fi,1 ≡
(∑

j∈[m] αi,j âj

)
+ βi, for some choice of scalars αi,1, . . . , αi,m, βi ∈ Fp.

If this relation does not hold for any i ∈ [k], then the challenger outputs ⊥.

2. Let Π ∈ Fk×mp be the matrix whose ith row is [αi,1, . . . , αi,m] and let b ∈ Fkp be the vector whose

ith component is βi. The challenger computes (a′1, . . . , a
′
k)T ← Π · (a1, . . . , am) + b.

3. Output the tuple (pk, {ai}i∈[m], s, {a′i}i∈[k]).

This is the ideal distribution with simulator S in Definition A.6.

For an adversary A, we write Hybi(A) to denote the output of an execution of the game described by Hybi
with adversary A. We now show that each adjacent pair of hybrids are statistically indistinguishable to any
adversary that makes polynomially-many queries to the generic group oracle.

Lemma C.7. For all adversaries A making poly(λ) queries to G, Hyb0(A)
s
≈ Hyb1(A).
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Proof. The only difference between Hyb0 and Hyb1 is that the challenger uses GGM.Add to construct the
ciphertext components cti,1 and cti,2 rather than GGM.Encode. Let t = poly(λ) be the number of queries
to GGM.Add the challenger makes to GGM.Add to compute ct1, . . . , ctm. The only difference between Hyb0

and Hyb1 is that computing ct1, . . . , ctm introduces t entries into the generic group table T in Hyb0 while
computing ct1, . . . , ctm introduces 2m entries into the T in Hyb1. However, these additional entries in T are
information-theoretically hidden from the view of A, and the view of A is identically distributed in Hyb0 and
Hyb1 unless A makes a query to G on an encoding present in T in Hyb0 but not in Hyb1. There are at most t
such encodings. Since the encodings are uniform over {0, 1}λ, and the adversary makes Q = poly(λ) queries,
the probability that the adversary makes a query on one of these encodings is at most Qt/2λ = negl(λ).
Thus, the view of A in Hyb0 and Hyb1 is statistically indistinguishable and the claim holds.

Lemma C.8. For all adversaries A making poly(λ) queries to G, Hyb1(A)
s
≈ Hyb2(A).

Proof. We show that the view of the adversary A is statistically indistinguishable in the two experiments.
By construction, the public key pk = (pp, p, g, h), the ciphertexts ct1, . . . , ctm, and the auxiliary data z are
identically distributed in Hyb1 and Hyb2. Namely, in both experiments, pp, g, h are uniform random strings
over {0, 1}λ, and each ciphertext cti consists of two uniformly random strings over {0, 1}λ. It suffices to
argue that each of the adversary’s queries to the generic group oracle are statistically indistinguishable. We
use a hybrid argument over the number of queries the adversary makes, where in the ith hybrid Hyb1,i, the
first i queries are answered according to the specification in Hyb2 while the remaining queries are answered
according to the specification in Hyb1. We show that for all i, the outputs of Hyb1,i−1 and Hyb1,i are

statistically indistinguishable. It suffices to consider the ith query:

� GGM.Setup: In both Hyb1,i−1 and Hyb1,i, the setup oracle outputs ⊥.

� GGM.Encode: In Hyb1,i−1, the GGM.Encode oracle outputs ⊥ unless the adversary queries the oracle

on k = sk′. Since the view of A on the first i − 1 queries in Hyb1,i−1 is independent of sk′ and sk′ is

uniform over {0, 1}λ, the output in Hyb1,i−1 is ⊥ with probability 1− 2−λ. In Hyb1,i, the output is ⊥
with probability 1, so the output distribution on the ith query is statistically indistinguishable in these
two experiments.

� GGM.Add: The addition oracle has identical behavior in Hyb1,i−1 and Hyb1,i. Namely, if the adversary

provides k = pp and two valid handles ξ1, ξ2, then it receives a uniformly random string in {0, 1}λ as
its output, and if it provides an invalid input, it receives ⊥.

� GGM.Test: Suppose an adversary makes a query to GGM.Test on k = pp and ξ ∈ T. On all other
queries, the oracle outputs ⊥ in both experiments. This means that ξ must have been added to T as
a result of a GGM.Encode query or as a result of a GGM.Add query. By construction of Hyb1,i+1, this
means that

ξ 7→

[
α+ βx̂+

∑
i∈[m]

(γir̂i + δi(r̂ix̂+ âi))︸ ︷︷ ︸
f(x̂,r̂1,...,r̂m,â1,...,âm)

]
, (C.1)

for some choice of scalars α, β, γ1, . . . , γm, δ1, . . . , δm ∈ Fp. By construction, the output of GGM.Test
in Hyb1,i−1 is 1 if and only if f(x, r1, . . . , rm, a1, . . . , am) = 0 where x, r1, . . . , rm, a1, . . . , am ∈ Fp are
the scalars sampled by the challenger in the experiment. In Hyb1,i, the output of GGM.Test is 1 only if
f ≡ 0 is the identically-zero polynomial (in the formal variables x̂, r̂1, . . . , r̂m, â1, . . . , âm). Thus, these
two experiments only differ if f 6≡ 0, but f(x, r1, . . . , rm, a1, . . . , am) 6= 0. We show that this happens
with negligible probability. First, in both Hyb1,i−1 and Hyb1,i, the first i − 1 queries are handled
according to the specification in Hyb2. By construction, this means that everything in the experiment
prior to the ith query can be simulated without knowledge of the value of x, r1, . . . , rm, and these values
can in fact be sampled after the adversary has submitted its ith query (i.e., after the adversary has
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committed to the polynomial f). First, define the polynomial g in the formal variables x̂, r̂1, . . . , r̂m to
be the polynomial f where each of the variables âi are instantiated with their actual value ai ∈ Fp:

g(x̂, r̂1, . . . , r̂m) = f(x̂, r̂1, . . . , r̂m, a1, . . . , am)

=

α+
∑
i∈[m]

δiai

+ βx̂+
∑
i∈[m]

(γir̂i + δir̂ix̂)

It is easy to see that if f 6≡ 0, then g 6≡ 0 (since if g ≡ 0, then it must be the case that β, γi, δi = 0 for
all i ∈ [m], which correspondingly means that α = 0, in which case f ≡ 0). Since g is a polynomial of
total degree 2 in the variables x̂, r̂1, . . . , r̂m, we conclude by the Schwartz-Zippel lemma that

Pr[g(x, r1, . . . , rm) = 0 | x, r1, . . . , rm
r← Fp] ≤ 2/p = negl(λ).

Thus, with overwhelming probability over the choice of x, r1, . . . , rm, if f 6≡ 0, then

f(x, r1, . . . , rm, a1, . . . , am) = g(x, r1, . . . , rm) 6= 0,

in which case the output in Hyb1,i−1 is 0, which coincides with the output in Hyb1,i.

Since the adversary makes a polynomial number of queries to the generic group oracle, and the response to
each query is statistically indistinguishable, we conclude via a hybrid argument that the adversary’s output
in the two distributions are statistically indistinguishable. Since the output of the experiment is computed
using the same procedure in Hyb1 and Hyb2, we conclude that the outputs of the two distributions are also
statistically indistinguishable.

Lemma C.9. For all adversaries A, Hyb2(A)
s
≈ Hyb3(A).

Proof. By construction, the view of A in Hyb2 and Hyb3 is identically distributed. Thus, the ciphertexts
ct′i, . . . , ct

′
k output by A in the two experiments are identically distributed. It suffices to argue that the

output in the two experiments are statistically indistinguishable. We write ct′i = (ct′i,1, ct
′
i,2) where each

ct′i,1, ct
′
i,2 ∈ {0, 1}λ. In addition, we note that in both Hyb2 and Hyb3, all of the interactions with A

can be implemented without knowledge of the values of x, r1, . . . , rm. Thus, we can defer the sampling of

x, r1, . . . , rm
r← Fp until after the adversary has output ct′1, . . . , ct

′
k. We consider several possibilities:

� Suppose that there exists i ∈ [k] where ImVer(sk, ct′i,M) = 0. Then, both experiments output ⊥.

� Suppose that there exists i ∈ [k] where ct′i,1 /∈ T or ct′i,2 /∈ T. Then, ImVer(sk, ct′i,M) = 0, and both
experiments output ⊥.

� Suppose ct′i,1 7→ fi,1 and ct′i,2 7→ fi,2 in T, but fi,2 − x̂fi,1 6≡
(∑

j∈[m] αi,j âj

)
+ βi for some i ∈ [k].

We argue that with overwhelming probability, ImVer(sk, ct′i,M) = 0 and both experiments output ⊥.
Take any a ∈M ⊆ Fp and define the polynomial ga in the formal variables x̂, r̂1, . . . , r̂m:

ga(x̂, r̂1, . . . , r̂m) = fi,2(x̂, r̂1, . . . , r̂m, a1, . . . , am)− x̂ · fi,1(x̂, r̂1, . . . , r̂m, a1, . . . , am)− a.

By the structure of fi,1 and fi,2 (Eq. (C.1)) and the assumption that fi,2−x̂fi,1 6≡
(∑

j∈[m] αi,j âj

)
+βi,

we have that ga 6≡ 0. Since ga is a polynomial of total degree 3, we can appeal to the the Schwartz-Zippel
lemma and conclude that for any a ∈M,

Pr[ga(x, r1, . . . , rm) = 0 | x, r1, . . . , rm
r← Fp] = 3/p.

By a union bound,

Pr[∃a ∈M : ga(x, r1, . . . , rm) = 0 | x, r1, . . . , rm
r← Fp] = 3|M|/p = negl(λ),
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since |M| = poly(λ). Thus, with overwhelming probability over the choice of x, r1, . . . , rm, we have
that Decrypt(sk, ct′i,M) = ⊥. Correspondingly, with overwhelming probability, ImVer(sk, ct′i,M) = 0
and both experiments output ⊥ in this case.

� Suppose ct′i,1 7→ fi,1 and ct′i,2 7→ fi,2 in T where fi,2 − x̂fi,1 ≡
(∑

j∈[m] αi,j âj

)
+ βi, and moreover,

that ImVer(sk, ct′i,M) = 1 for all i ∈ [k]. Since ImVer(sk, ct′,M) = 1, there exists a′i ∈M such that

fi,2(x, r1, . . . , rm, a1, . . . , am)− xf1(x, r1, . . . , rm, a1, . . . , am) = a′i.

Since fi,2 − x̂fi,1 ≡
(∑

j∈[m] αi,j âj

)
+ βi, this means that

fi,2(x, r1, . . . , rm, a1, . . . , am)− xf1(x, r1, . . . , rm, a1, . . . , am) =
∑
j∈[m]

αi,jaj + βi = a′i.

Since this holds for all i ∈ [k], this means that (a′1, . . . , a
′
k)T = Π · (a1, . . . , am)T + b, where Π ∈ Fk×mp

and b ∈ Fkp are precisely the quantities the challenger constructs in Hyb3. Thus, in this case, the
output in Hyb2 and Hyb3 are identically distributed.

The claim now follows by combining Lemmas C.7 to C.9.

C.2 Adaptive Soundness of Construction A.8 in the Generic Group Model

In this section, we show that Construction A.8 satisfies adaptive soundness when the underlying encryption
scheme is instantiated with ElGamal encryption over a generic group (Construction C.4).

Theorem C.10. Let C = {C`}`∈N be a family of arithmetic circuits. Let ΠEnc be the ElGamal encryption
(Construction C.4) scheme with plaintext space Fp, and let ΠLPCP be a 1-query linear PCP over Fp for the
relation RC with bound function B = B(λ), query length ` = `(λ) and soundness error ε = ε(λ). Then
Construction A.8 is a preprocessing SNARG for RC with perfect completeness and adaptive soundness error
ε+ negl(λ) when the group G in the ElGamal encryption scheme is modeled as a generic group.

Proof. Completeness follows exactly as in Theorem A.9, so it suffices to argue adaptive soundness. We use
a hybrid argument similar to that used in the proof of Theorem C.6. As in the proof of Theorem C.6, we
model GroupGen as a generic group G.

� Hyb0: This is the adaptive soundness experiment:

1. The challenger begins by sampling (pp, sk, p)← GGM.Setup(1λ), g ← GGM.Encode(sk, 1), z
r← Fp,

and h
r← GGM.Encode(sk, z). It sets pk = (pp, p, g, h). Next, the challenger samples (st,qinp,q)←

QLPCP where qinp ∈ Fnp and q = (q1, . . . , q`) ∈ F`p. Then, the setup algorithm computes the

ciphertexts cti ← Encrypt(pk, qi) for each i ∈ [`]. For each i ∈ [`], the challenger samples ri
r← Fp

and computes cti,1 to be an encoding of ri and cti,2 to be an encoding of riz+qi (using the public
components pp, g, h and queries to GGM.Add). It sets cti = (cti,1, cti,2). In particular, cti,1 7→ ri
and cti,2 7→ riz + qi in the internal table T maintained by the generic group oracle.

2. The challenger gives crs = (pk, {cti}i∈[`]) to the adversary A. In addition, the adversary is given
access to the generic group oracles GGM.Setup,GGM.Encode,GGM.Add,GGM.Test.

3. At some point, the adversary outputs a statement x and a proof π. If x ∈ LC , then the challenger
outputs 0. Otherwise, the challenger parses π = (ct′1, ct

′
2) and checks that ct′1 7→ r and ct′2 7→ rz+a

for some r ∈ Fp and a ∈ [−B,B] in the internal table T maintained by the generic group oracle.
If not, the challenger outputs 0. Otherwise, the challenger outputs VLPCP(st,qT

inpx, a).

� Hyb1: Same as Hyb0 except the challenger computes the ciphertext components cti,1, cti,2 by directly
encoding the value of ri and riz + qi using the secret key sk. Specifically, the challenger computes
cti,1 ← GGM.Encode(sk, ri) and cti,2 ← GGM.Encode(sk, riz + qi).
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� Hyb2: Same as Hyb1 except the challenger implements the generic group oracle queries with the fol-
lowing modified procedure:

1. The challenger starts by running (pp, sk, p) ← GGM.Setup(1λ) and samples z
r← Fp. It then

initializes an empty table T, samples two strings g, h
r← {0, 1}λ and adds the mappings g 7→ 1

and h 7→ ẑ to T. Here, ẑ is a formal variable representing the secret key. The challenger sets
pk = (pp, p, g, h).

2. Next, for each i ∈ [`], the challenger samples ri
r← Fp, and cti,1, cti,2

r← {0, 1}λ. It adds mappings
cti,1 7→ r̂i and cti,2 7→ r̂iẑ+ q̂i where r̂i, . . . , r̂` and q̂1, . . . , q̂` are formal variables for the encryption
randomness and the query component, respectively. It still sets cti = (cti,1, cti,2) as before.

3. The challenger gives crs = (pk, {cti}i∈[`]) to the adversary. It then responds to the adversary’s
generic group queries as follows:

– GGM.Setup: The challenger replies to A with ⊥.

– GGM.Encode: The challenger replies to A with ⊥.

– GGM.Add: On input a key k and handles ξ1, ξ2 ∈ {0, 1}λ, the simulator checks that k = pp
and that ξ1, ξ2 are present in T and mapped to formal polynomials f1, f2 over Fp (returning

⊥ otherwise). If the checks pass, the oracle samples a fresh handle ξ
r← {0, 1}λ and adds the

entry ξ 7→ (f1 + f2) to T and replies with ξ.

– GGM.Test: On input a key k and a handle ξ ∈ {0, 1}λ, the simulator checks that k = pp, that
ξ is present in T, and mapped to a formal polynomial f over Fp (returning ⊥ otherwise). If
the checks pass, the oracle outputs “zero” if f ≡ 0 is the identically-zero polynomial over Fp
and “nonzero” otherwise.

4. At the end of the experiment, the adversary outputs a statement x and a proof π. If x /∈ LC , then
the adversary outputs 0. Otherwise, the challenger scans through the values in T and instantiates
each of the formal variables ẑ, r̂1, . . . , r̂`, q̂1, . . . , q̂` with their real values z, r1, . . . , r`, q1, . . . , q`,
respectively. The output of Hyb2 is computed using the same procedure as in Hyb1.

For an adversary A, we write Hybi(A) to denote the output of experiment Hybi with adversary A. We now
show that the output distribution of any two adjacent hybrid experiments is statistically indistinguishable.
Finally, we show that the output of Hyb2(A) is 0 with probability negligibly close to ε.

Lemma C.11. For all adversaries A making poly(λ) queries to G, Hyb0(A)
s
≈ Hyb1(A).

Proof. Follows by a same analysis as the proof of Lemma C.7.

Lemma C.12. For all adversaries A making poly(λ) queries to G, Hyb1(A)
s
≈ Hyb2(A).

Proof. Follows by a similar analysis as the proof of Lemma C.8.

Lemma C.13. If ΠLPCP is sound, then Pr[Hyb2(A) = 1] ≤ ε(λ) + negl(λ).

Proof. This follows by a similar analysis as the proof of Lemma C.9. First, we note that in Hyb2, the
adversary’s view is entirely independent of the linear PCP query q ∈ F`p. This means that the challenger
can sample (st,qinp,q) after the adversary outputs the statement x and proof π. Similarly, the adversary’s
view is also independent of the value of the secret key z as well as the encryption randomness r1, . . . , r`, so
the challenger can also sample these values after the adversary has chosen its output. Write π = (ct′1, ct

′
2).

We consider several possibilities:

� If the adversary outputs a statement x ∈ L, then the output of the experiment is 0.

� If either ct′1 /∈ T or ct′2 /∈ T, then the experiment outputs 0.
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� Suppose ct′1 7→ f1 and ct′2 7→ f2 in T, but f2 − ẑf1 6≡
(∑

j∈[`] αj q̂j

)
+ β, for some set of scalars

α1, . . . , α`, β ∈ Fp. By construction of Hyb2, every encoding ξ in T is a formal polynomial of the
following form:

ξ 7→

[
ᾱ+ β̄ẑ +

∑
j∈[`]

(γ̄j r̂j + δ̄j(r̂j x̂+ q̂j))︸ ︷︷ ︸
f(ẑ,r̂1,...,r̂`,q̂1,...,q̂`)

]
,

for some choice of scalars ᾱ, β̄, γ̄1, . . . , γ̄`, δ̄1, . . . , δ̄` ∈ Fp. We argue that with overwhelming probability
over the choice of z, r1, . . . , r`, the output of the experiment is 0 in this case. Take any a ∈ [−B,B],
and define the polynomial ga in the formal variables ẑ, r̂1, . . . , r̂m:

ga(ẑ, r̂1, . . . , r̂m) = f2(ẑ, r̂1, . . . , r̂`, q1, . . . , qm)− ẑ · f1(ẑ, r̂1, . . . , r̂`, q1, . . . , qm)− a.

Since f2 − ẑf1 6≡
(∑

j∈[`] αj q̂j

)
+ β, we have that ga 6≡ 0. Since ga is a polynomial of total degree 3,

we can appeal to the the Schwartz-Zippel lemma and conclude that for any a ∈ [−B,B],

Pr[ga(z, r1, . . . , r`) = 0 | z, r1, . . . , r`
r← Fp] = 3/p.

By a union bound,

Pr[∃a ∈ [−B,B] : ga(z, r1, . . . , r`) = 0 | z, r1, . . . , r`
r← Fp] = 6B/p = negl(λ),

since B = poly(λ). Thus, with overwhelming probability over the choice of z, r1, . . . , r`, the output of
the experiment is 0 in this case.

� Suppose that x /∈ L and ct′1 7→ f1 and ct′2 7→ f2 in T where f2 − ẑf1 ≡
(∑

j∈[`] αj q̂j

)
+ β. Consider

the value of f2 − ẑf1 instantiated with the values of z, r1, . . . , r`, q1, . . . , q`:

f2(z, r1, . . . , r`, q1, . . . , q`)− z · f1(z, r1, . . . , r`, q1, . . . , q`) =
∑
j∈[`]

αjqj + β = qTα + β,

where α ∈ F`p is the vector of α1, . . . , α`. As noted above, the linear PCP query (st,qinp,q) is sampled
after the adversary has chosen ct′1 and ct′2 (and correspondingly, after it has committed to the vector
α and the offset β). Since x /∈ L, we can appeal to soundness of ΠLPCP and conclude

Pr[VLPCP(st,qT
inpx,q

Tα + β) = 1 | (st,qinp,q)← QLPCP] ≤ ε.

Thus, in this case, the output of the experiment is 1 with probability at most ε.

Thus, in Hyb2, the output of the experiment is 1 with probability at most ε+ negl(λ).

The claim now follows by combining Lemmas C.11 to C.13.

D Proof of Lemma 4.2 (Hardness of GapMWSP)

Lemma 4.2 follows by a direct adaptation of [HKLT19, Theorem 2.1], generalized to arbitrary finite fields.
We give a reduction from the NP-hard problem GapLabelCover to GapMWSP. We begin by reviewing the
definition and the NP-hardness of the LabelCover problem:

Definition D.1 (Gap Label Covering Problem (GapLabelCover) [Raz95, H̊as01, HKLT19]). A LabelCover
instance consists of a regular bipartite multi-graph G = (L,R,E) and two finite sets ΣL,ΣR where |ΣL| ≥
|ΣR|. Every vertex in L should be assigned a label from ΣL and every vertex in R should be assigned a
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label in ΣR. For each edge e ∈ E there is a projection πe : ΣL → ΣR. Given a labeling to the vertices of
the graph (i.e. functions φL : L → ΣL and φR : R → ΣR), an edge e = (a, b) ∈ E is said to be “satisfied” if
πe(φL(a)) = φR(b). For 1 ≥ c > s > 0, GapLabelCoverc,s is the promise problem of distinguishing whether
the LabelCover instance is at least c-satisfiable (i.e., a c-fraction of the edges can be satisfied by some labeling)
or at most s-satisfiable (i.e., every labeling can only satisfy at most an s-fraction of the edges).

Theorem D.2 (NP-Hardness of GapLabelCover [MR10, DS14]). For any constant c > 0 and δ = 1/ logc n,
GapLabelCover1,δ is NP-hard when the LabelCover instance satisfies |ΣL|, |ΣR| ≤ |L|+ |R|.

To show NP-hardness of the GapMWSP problem, we start by showing that without loss of generality, we can
always assume that |L| > |R| in GapLabelCover1,δ.

Lemma D.3. Let I be a LabelCover instance over a regular bipartite multi-graph G = (L,R,E). Then,
there is an efficient algorithm that constructs a new LabelCover instance I ′ over a bipartite multi-graph
G′ = (L′, R,E′) such that |L′| = 2|L|, every node in L′ has equal degree, and for any 0 ≤ δ ≤ 1, instance I
is δ-satisfiable if and only if I ′ is δ-satisfiable.

Proof. Let I = (G = (L,R,E),ΣL,ΣR, {πe}e∈E) be a LabelCover instance. Write L = {u1, . . . , uk} and
R = {v1, . . . , v`}. We construct a LabelCover instance I ′ = (G′ = (L′, R,E′),ΣL,ΣR, {π′e}e∈E′) as follows:

� Let L1 = L and L2 = {u′1, . . . , u′k} and set L′ = L1 ∪ L2.

� Let E1 = E and E2 = {(u′i, vj) : (ui, vj) ∈ E} and set E′ = E1 ∪ E2;

� For (ui, vj) ∈ E, set π′ui,vj , π
′
u′i,vj

← πui,vj .

By construction, |L′| = 2|L| and G′ is bipartite. Since G is regular, every node in L has the same degree; the
same extends to L′ by construction. It suffices to show that I is δ-satisfiable if and only if I ′ is δ-satisfiable:

� Suppose I is δ-satisfiable. Then, there exists a labeling function (φL, φR) that satisfies a δ-fraction of
the edges e ∈ E. We define φL′ : L

′ → ΣL to be the mapping ui, u
′
i 7→ φL(ui). By construction, this

satisfies a δ fraction of the edges in E1 and E2.

� Suppose I ′ is δ-satisfiable. Then, there exists a labeling function (φL′ , φR) that satisfies a δ-fraction of
the edges in e ∈ E′. Let φ1 : L1 → ΣL denote the action of φL′ restricted to L1 and let φ2 : L2 → ΣR
denote the action of φL′ restricted to L2. Since E′ = E1 ∪ E2 and |E1| = |E2|, by construction of
E1, E2, it must be the case that either φ1 satisfies a δ-fraction of the edges in E1 or φ2 satisfies a
δ-fraction of the edges in E2. If φ1 satisfies a δ-fraction of the edges in E1 = E, then I is δ-satisfiable.
If φ2 satisfies a δ-fraction of the edges in E2, then by construction of L2 and E2, the labeling function
φL(ui) := φ2(u′i) will satisfy a δ-fraction of the constraints in E1 = E.

Take any constant c > 0 and let β = logc n. Take any finite field F where log|F| = poly(n). Let β′ =

logc
′
n/2 for constant c′ > c such that β′ > β. We show NP-hardness of GapMWSPβ′ via a reduction from

GapLabelCover1,δ for δ = 2/β′ = 1/ logc
′
n. Since β′ > β, this shows NP-hardness of GapMWSPβ . Let

I = (G = (L,R,E),ΣL,ΣR, {πe}e∈E) be a GapLabelCover1,δ instance. First, by iterative application of
Lemma D.3 (at most log|R| times), we can assume that |L| > |R|. We construct our GapMWSPβ′ instance
as follows:

� For each vertex v ∈ L ∪ R and for each possible label ` ∈ ΣL ∪ ΣR for node v, introduce a variable
xv,`. Let n = |L||ΣL|+ |R||ΣR| be the number of variables.

� Define the following family of linear constraints over the variables xv,` ∈ F:

– ∀s ∈ L :
∑
`∈ΣL

xs,` = 1.

– ∀t ∈ R :
∑
`∈ΣR

xt,` = 1.

– ∀(s, t) ∈ E,∀` ∈ ΣR :
∑
r∈ΣL:πs,t(r)=`

xs,r = xt,`.
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Let m = |L| + |R| + |E||ΣR| be the number of constraints. Define a matrix A ∈ Fm×n and a target
vector b ∈ Fm corresponding to the above system of linear constraints.

� We set the weight to d = |L|+ |R|.

The GapMWSPβ′ instance is then the tuple I ′ = (A,b, d). To conclude the proof, it suffices to show
that there is a one-to-one correspondence between yes instances and no instances for GapLabelCover1,δ and
GapMWSPβ′ :

� Low-weight solution if I is satisfiable: Suppose the GapLabelCover1,δ instance I is satisfiable. Let
φL, φR be the satisfying labeling function. By construction, we can set xs,φL(s) = 1 for all s ∈ L and
xt,φR(t) = 1 for all t ∈ R, and all other xv,` = 0 to obtain a satisfying assignment for I ′. Moreover,
there are only |L|+ |R| = d nonzero entries in L.

� No low-weight solutions if I is not δ-satisfiable: Suppose that I is not δ-satisfiable. Take any
solution x ∈ Fn where Ax = b. The first two constraints in the linear system ensure that for every
vertex v ∈ L∪R, there is at least one label ` ∈ ΣL∪ΣR such that xv,` 6= 0. Therefore, for every vertex
v we can define a non-empty set of potential labels Lv = {` ∈ ΣL ∪ ΣR : xv,` 6= 0}.

Consider the randomized strategy for the LabelCover problem where every vertex v ∈ L ∪R is labeled

with a random label `v
r← Lv. Take any edge (s, t) ∈ E, and let `t ∈ ΣR be the label assigned to

t ∈ R. By assumption, xt,`t 6= 0. By the third set of constraints,
∑
r∈ΣL:πs,t(r)=`s

xs,r = xt,`t 6= 0.

Thus, there must exist some r ∈ ΣL such that πs,t(r) = `s and xs,r 6= 0. In other words, r ∈ Ls. Since

`s
r← Ls, this means that edge (s, t) is satisfied with probability at least 1/|Ls|. Since every node in L

has equal degree, the expected fraction of constraints satisfied by this labeling strategy is

Es∈L
[

1

|Ls|

]
≥ 1

Es∈L[|Ls|]
,

where the inequality follows from Jensen’s inequality. Since I is not δ-satisfiable, at most a δ-fraction
of the constraints are satisfiable, so this means that

δ ≥ Es∈L
[

1

|Ls|

]
≥ 1

Es∈L[|Ls|]
,

or equivalently, Es∈L[|Ls|] ≥ 1/δ. This means that there are at least |L|/δ variables xs,` where s ∈ |L|
and ` ∈ ΣL that are nonzero. Since |L| ≥ |R| by assumption, there are at least

1

δ
|L| = 1

2δ
(|L|+ |L|) > 1

2δ
(|L|+ |R|) = β′d

elements in x that are nonzero. We conclude that if I is not δ-satisfiable, then there are no solutions
to I ′ with weight less than β′d.

Finally, we need to show that there is a Karp-Levin reduction from SAT to GapMWSPβ . First, we use
the fact that the proof of Theorem D.2 from [MR10, DS14] gives a Karp-Levin reduction from SAT to
the GapLabelCover1,δ problem (via the PCP theorem). Moreover, our reduction above gives a Karp-Levin
reduction from GapLabelCover1,δ to GapMWSPβ′ (for any choice of finite field F where log|F| = poly(n)).
Composing the two reductions yields a Karp-Levin reduction from SAT to GapMWSPβ′ (and correspondingly,
to GapMWSPβ) over any finite field F here log|F| = poly(n).

E Witness Encryption from Predictable Arguments

In this section, we show how to obtain a witness encryption scheme from any 2-message predictable argu-
ment. Our construction largely follows the corresponding construction of Faonio et al. [FNV17], except we
additionally consider schemes with imperfect completeness.
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Construction E.1 (Witness Encryption from Predictable Argument [FNV17, adapted]). Let ΠLA = (QLA,
PLA,VLA) be a predictable 2-message laconic argument for an NP relation R. Suppose the prover’s message
can be expressed as an `-bit string (i.e., elements of {0, 1}`). We construct a witness encryption scheme
ΠWE = (Encrypt,Decrypt) for R as follows:

� Encrypt(1λ, x,m) On input the security parameter λ, a statement x and a message bit m ∈ {0, 1}, the

encryption algorithm samples a random r
r← {0, 1}` and runs (q, st)← QLA(1λ, x), where st ∈ {0, 1}`.

Compute ct = (q, r,m⊕〈r, st〉). Here, we write 〈r, st〉 to denote the inner product between r, st ∈ {0, 1}`
(viewed as vectors in F`2).

� Decrypt(w, ct): On input a ciphertext ct = (q, r,m′) and a witness w, the decryption algorithm com-
putes π ← PLA(q, x, w) ∈ {0, 1}` and outputs 〈r, π〉 ⊕m′.

Theorem E.2 (Witness Encryption from Predictable Arguments). If ΠLA is a predictable 2-message argu-
ment for R with completeness error c and soundness error ε = negl(λ), then ΠWE from Construction E.1 is
a witness encryption scheme for R with correctness error c/2.

Proof. We show correctness and semantic security.

� Correctness: Take any (x,w) ∈ R and m ∈ {0, 1}. Let ct = (q, r,m′) ← Encrypt(1λ, x,m). In this

case, (q, st)← QLA(1λ, x), r
r← {0, 1}`, and m′ = m⊕ 〈r, st〉. Consider Decrypt(ct, w). The decryption

algorithm Decrypt(w, ct) begins by computing π ← PLA(q, x, w). We consider two possibilities:

– By completeness of ΠLA, with probability 1 − c, π = st (since ΠLA is predictable). In this case,
the decryption algorithm correctly outputs m.

– With probability c, π 6= st. Moreover, in this case, the value of π is computed independently of r
(namely, π depends only on q, x, w while r was sampled uniformly at random from {0, 1}`). By
pairwise independence, if π 6= st,

Pr[〈r, π〉 = 〈r, st〉 | r r← {0, 1}`] = 1/2.

Thus, the decryption algorithm outputs m with probability 1/2 in this case.

Thus, we see that

Pr[Decrypt(w, ct) = m | ct← Encrypt(1λ, x,m)] = 1− c+
c

2
= 1− c

2
.

� Semantic security: Our analysis will rely on the classic Goldreich-Levin theorem [GL89], a version
of which we state below:

Theorem E.3 (Goldreich-Levin). Take any ε > 0. Fix some x ∈ {0, 1}n and let Ax be an efficient

(and possibly randomized) algorithm where Pr[Ax(r) = 〈r, x〉 | r r← {0, 1}n] ≥ 1/2 + ε. There exists a
poly(n, 1/ε)-time decoding algorithm DAx(·) that given oracle access to Ax, outputs a list L ⊆ {0, 1}n
such that |L| = poly(n, 1/ε) and x ∈ L with probability at least 1/2.

Turning back to semantic security, suppose that there exists an efficient adversary A and some x /∈ L
such that

Pr[A(1λ, ctb) = b | b r← {0, 1}, ctb ← Encrypt(1λ, x, b)] ≥ 1

2
+ ε.

for some ε = 1/poly(λ). Let t be a bound on the number of bits of randomness needed by QLA. Namely,

to sample (q, st)← QLA(1λ, x), one first samples ρ
r← {0, 1}t and then computes (q, st)← QLA(1λ, x; ρ).

This means that

Pr

[
A(1λ, (q, r, b⊕ 〈r, st〉)) = b

∣∣∣∣ b
r← {0, 1}, r r← {0, 1}`, ρ r← {0, 1}t;

(q, st)← QLA(1λ, x; ρ)

]
≥ 1

2
+ ε.

We use A to construct an algorithm B that on input (q, r) predicts the value of 〈r, st〉, where (q, st)←
QLA(1λ, x) and r

r← {0, 1}`:
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– On input (q, r), algorithm B samples b
r← {0, 1} and invokes A on input (q, r, b). If A outputs b,

then B outputs 0. Otherwise B outputs 1.

It is easy to see that by construction,

Pr

[
B(1λ, (q, r)) = 〈r, st〉

∣∣∣∣ r
r← {0, 1}`, ρ r← {0, 1}t;

(q, st)← QLA(1λ, x; ρ)

]
≥ 1

2
+ ε.

We use B to construct an adversary B′ that breaks soundness of ΠLA (for the instance x /∈ L):

1. On input the security parameter λ, the instance x, and the query q, run the Goldreich-Levin

list-decoding algorithm DB(1λ,(q,·)) (Theorem E.3) where the oracle queries are implemented as
follows:

– On input r ∈ {0, 1}`, output B(1λ, (q, r)).

Let L ⊆ {0, 1}` be the list output by the list-decoding algorithm.

2. Output π
r← L.

We now analyze the success probability of algorithm B′. First, for a fixed element ρ ∈ {0, 1}t and the
associated query (q, st)← QLA(1λ, x; ρ), define the algorithm Bρ(r) to be the algorithm that on input
r ∈ {0, 1}` outputs B(1λ, (q, r)). Let S ⊆ {0, 1}t be the set of elements ρ ∈ {0, 1}t such that

Pr[Bρ(r) = 〈r, st〉 | r r← {0, 1}`, (q, st)← QLA(1λ, x; ρ)] ≥ 1

2
+
ε

2
. (E.1)

By an averaging argument,

Pr[ρ ∈ S | ρ r← {0, 1}t] ≥ ε.

In the soundness game, the challenger begins by sampling ρ
r← {0, 1}t and (q, st)← QLA(1λ, x; ρ), and

algorithm B′ is given as input (1λ, x, q). Thus, with probability ε, the randomness ρ sampled by the
challenger lies in the set S. In this case, the oracle B(1λ, (q, ·)) ≡ Bρ(·) in B′ satisfies Eq. (E.1), so
we can appeal to the Goldreich-Levin theorem (Theorem E.3) to conclude that the list L output by

DB(1λ,(q,·)) contains st with probability at least 1/2. If st ∈ L, then B′ outputs st with probability
1/|L|, and since ΠLA is predictable, VLA(st, st) = 1. Thus, B′ breaks soundness with probability

Pr[B′(1λ, x, q) = st | (q, st)← QLA(1λ, x)] ≥ ε · 1

2
· 1

|L|
=

1

poly(`, 1/ε)
=

1

poly(λ)
,

since ` = poly(λ) and ε = 1/poly(λ) by assumption. Moreover, the running time of B′ is bounded by
the product of the running times of the list-decoding algorithm and the running time of B, both of
which are poly(λ, `, 1/ε) = poly(λ). Thus, B′ breaks soundness with non-negligible probability and the
claim holds.

69


	Introduction
	Summary of Contributions
	Concretely-Efficient SNARGs with 2 Group Elements
	From Hardness of Approximation to Witness Encryption

	Preliminaries
	Linear PCPs

	1-Query Linear PCPs via Packing
	Constructing 1-Query Bounded Linear PCPs
	SNARGs based on ElGamal
	Concrete Efficiency of the ElGamal-Based SNARG

	1-Query Linear PCP from Hardness of Approximation
	1-Element Laconic Arguments and Witness Encryption
	Predictable Arguments and Witness Encryption
	1-Element Laconic Argument from Hardness of Approximation
	Analysis of cons:one-element-la.

	Succinct Non-Interactive Arguments and Laconic Arguments
	The Bitansky et al. Compiler

	Linear PCPs for Boolean Circuit Satisfiability
	A Linear PCP from the Hadamard Code
	Bounded Linear PCP from the Hadamard Code
	Zero-Knowledge via Noise Smudging

	The Generic Group Model
	Linear Targeted Malleability of ElGamal
	Adaptive Soundness of cons:generic-snarg in the Generic Group Model

	Proof of lem:mwsp-hardness-lemma (Hardness of GapMWSP)
	Witness Encryption from Predictable Arguments

