
Lattice-Based Functional Commitments:
Constructions and Cryptanalysis

Davi

David Wu

December 2023

based on joint work with Hoeteck Wee

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

𝜋

𝝈

𝑥
Commit

“opening”

“commitment”

𝝈

Functional Commitments

Takes a common reference string and commits to an input 𝑥

Outputs commitment 𝜎 and commitment state st

𝑥
Commit

Commit crs, 𝑥 → 𝜎, st

“commitment”

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Open st, 𝑓 → 𝜋
Takes the commitment state and a function 𝑓 and outputs an opening 𝜋

Verify crs, 𝜎, 𝑓, 𝑦 , 𝜋 → 0/1

Commit crs, 𝑥 → 𝜎, st

Checks whether 𝜋 is valid opening of 𝜎 to value 𝑦 with respect to 𝑓

𝜋

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Binding: efficient adversary cannot open 𝜎 to two different values
with respect to the same 𝑓

𝝈

𝜋0

𝜋1

𝑓, 𝑦0

𝑓, 𝑦1

Verify crs, 𝜎, 𝑓, 𝑦0 , 𝜋0 = 1

Verify crs, 𝜎, 𝑓, 𝑦1 , 𝜋1 = 1

𝜋

Functional Commitments

𝝈
𝑓(𝑥)Open + Verify

𝑥

Succinctness: commitments and openings should be short
• Short commitment: 𝜎 = poly 𝜆, log 𝑥
• Short opening: 𝜋 = poly 𝜆, log 𝑥 , 𝑓 𝑥

𝜋

Will consider relaxation where 𝜎 and 𝜋 can grow with depth of the
circuit computing 𝑓

Special Cases of Functional Commitments

Vector commitments:

Polynomial commitments:

𝑥1, 𝑥2, … , 𝑥𝑛 𝑥𝑖

ind𝑖 𝑥1, … , 𝑥𝑛 ≔ 𝑥𝑖

commit to a vector, open at an index

𝛼0, 𝛼1, … , 𝛼𝑑

𝑓𝑥 𝛼0, … , 𝛼𝑑 ≔ 𝛼0 + 𝛼1𝑥 + ⋯ + 𝛼𝑑𝑥𝑑

𝑦

commit to a polynomial, open to the evaluation at 𝑥

Succinct Functional Commitments

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions

[LY10, CF13, LM19, GRWZ20] vector commitment 𝑞-type pairing assumptions

[KZG10, Lee20] polynomial commitment 𝑞-type pairing assumptions

[CF13, LM19, BBF19] vector commitment groups of unknown order

[BFS19, BHRRS21, BF23] polynomial commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[LRY16] Boolean circuits collision-resistant hash functions + SNARKs

[LRY16] linear functions 𝑞-type pairing assumptions

[ACLMT22] constant-degree polynomials 𝑘-𝑅-ISIS assumption (falsifiable)

[dCP23] Boolean circuits SIS (non-succinct openings in general)

(not an exhaustive list!)

[BCFL23] Boolean circuits twin 𝑘-𝑅-ISIS

[WW23a, WW23b] Boolean circuits ℓ-succinct SIS This talk

[KLVW23] Boolean circuits LWE (via batch arguments)

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗 ∈ ℤ𝑞

𝑚 where 𝑖 ≠ 𝑗

short (i.e., low-norm) vector
satisfying 𝑨𝑖𝒖𝑖𝑗 = 𝒕𝑗

𝑨𝑖
𝒖𝑖𝑗

𝒕𝑗

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗 ∈ ℤ𝑞

𝑚 where 𝑖 ≠ 𝑗

𝑨𝑖
𝒖𝑖𝑗

𝒕𝑗

Commitment to 𝒙 ∈ ℤ𝑞
ℓ :

𝒄 = ෍

𝑖∈ ℓ

𝑥𝑖𝒕𝑖

linear combination of target vectors

Opening to value 𝑦 at index 𝑖:

short 𝒗𝑖 such that 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑦 ⋅ 𝒕𝑖

Honest opening:

𝒗𝑖 = ෍

𝑗≠𝑖

𝑥𝑗𝒖𝑖𝑗

Correct as long as 𝒙 is short

𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 = ෍

𝑗≠𝑖

𝑥𝑗𝑨𝑖𝒖𝑖𝑗 + 𝑥𝑖𝒕𝑖 = ෍

𝑗∈ ℓ

𝑥𝑗𝒕𝑗 = 𝒄

Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗 ∈ ℤ𝑞

𝑚 where 𝑖 ≠ 𝑗

𝑨𝑖
𝒖𝑖𝑗

𝒕𝑗

[PPS21]: 𝑨𝑖 ← ℤ𝑞
𝑛×𝑚 and 𝒕𝑖 ← ℤ𝑞

𝑛 are independent and uniform

[ACLMT21]: 𝑨𝑖 = 𝑾𝑖𝑨 and 𝒕𝑖 = 𝑾𝑖𝒖𝑖 where 𝑾𝑖 ← ℤ𝑞
𝑛×𝑛, 𝑨 ← ℤ𝑞

𝑛×𝑚, 𝒖𝑖 ← ℤ𝑞
𝑛

suffices for vector commitments (from SIS)

generalizes to functional commitments for constant-degree polynomials (from 𝑘-𝑅-ISIS)

(one candidate adaptation to the integer case)

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

𝑰𝑛 denotes the identity matrix

𝑨1 −𝑰𝑛

⋱ ⋮
𝑨ℓ −𝑰𝑛

⋅

𝒗1

⋮
𝒗ℓ

𝒄

=

−𝑥1𝒕1

⋮
−𝑥ℓ𝒕ℓ

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

For security and functionality, it
will be useful to write 𝒄 = 𝑮ො𝒄

𝑮 =
1 2 ⋯ 2⌊log 𝑞⌋

⋱
1 2 ⋯ 2 log 𝑞

“powers of two matrix”

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1

⋮
𝒗ℓ

ො𝒄

=

−𝑥1𝒕1

⋮
−𝑥ℓ𝒕ℓ

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

Common reference string:

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1

⋮
𝒗ℓ

ො𝒄

=

−𝑥1𝒕1

⋮
−𝑥ℓ𝒕ℓ

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ ∈ ℤ𝑞
𝑛

Common reference string:

trapdoor for 𝑩ℓ

auxiliary data: cross-terms 𝒖𝑖𝑗 ← 𝑨𝑖
−1 𝒕𝑗

Trapdoor for 𝑩ℓ can be used to sample short solutions
𝒙 to the linear system 𝑩ℓ𝒙 = 𝒚 (for arbitrary 𝒚)

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1

⋮
𝒗ℓ

ො𝒄

=

−𝑥1𝒕1

⋮
−𝑥ℓ𝒕ℓ

𝑩ℓ

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Supports commitments to arbitrary (i.e., large) values over ℤ𝑞

Committing to an input 𝒙:

Use trapdoor for 𝑩ℓ to jointly
sample a solution 𝒗1, … , 𝒗ℓ, ො𝒄

𝒄 = 𝑮ො𝒄 is the commitment and
𝒗1, … 𝒗ℓ are the openings

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1

⋮
𝒗ℓ

ො𝒄

=

−𝑥1𝒕1

⋮
−𝑥ℓ𝒕ℓ

𝑩ℓ

Our Approach

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

Our approach: rewrite ℓ relations as a single linear system

∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Supports statistically private openings
(commitment + opening hides unopened positions)

Committing to an input 𝒙:

Use trapdoor for 𝑩ℓ to jointly
sample a solution 𝒗1, … , 𝒗ℓ, ො𝒄

𝒄 = 𝑮ො𝒄 is the commitment and
𝒗1, … 𝒗ℓ are the openings

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1

⋮
𝒗ℓ

ො𝒄

=

−𝑥1𝒕1

⋮
−𝑥ℓ𝒕ℓ

𝑩ℓ

Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 ∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Suppose adversary can break binding

𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖

= 𝑨𝑖𝒗𝑖
′ + 𝑥𝑖

′𝒕𝑖

outputs 𝒄, 𝒗𝑖 , 𝑥𝑖 , 𝒗𝑖
′, 𝑥𝑖

′ such that

trapdoor for 𝑩ℓ

given matrices 𝑨1, … , 𝑨ℓ set 𝑨𝑖 ← ℤ𝑞
𝑛×𝑚

target vectors 𝒕1, … , 𝒕ℓ set 𝒕𝑖 = 𝒆1 = 1,0, … , 0 T

𝑨𝑖 𝒗𝑖 − 𝒗𝑖
′ = 𝑥𝑖 − 𝑥𝑖

′ 𝒆1

given 𝑨 ← ℤ𝑞
𝑛×𝑚, hard to find

short 𝒙 ≠ 0 such that 𝑨𝒙 = 𝟎

Short integer solutions (SIS)

𝒗𝑖 − 𝒗𝑖
′ is a SIS solution for 𝑨𝑖

without the first row

Proving Security

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 ∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Adversary that breaks binding can solve SIS with respect to 𝑨𝑖

(technically 𝑨𝑖 without the first row – which is equivalent to SIS with dimension 𝑛 − 1)

but… adversary also gets additional information beyond 𝑨𝑖

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

Adversary sees
trapdoor for 𝑩ℓ

Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes other lattice-based functional commitments [PPS21, ACLMT22]

Verification invariant: 𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖 ∀𝑖 ∈ [ℓ]
for a short 𝒗𝑖

Adversary that breaks binding can solve SIS with respect to 𝑨𝑖

SIS is hard with respect to 𝑨𝑖
 given a trapdoor (a basis) for the matrix

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

Basis-augmented SIS (BASIS) assumption:

Can simulate CRS from BASIS challenge:

trapdoor for 𝑩ℓ

matrices 𝑨1, … , 𝑨ℓ ← ℤ𝑞
𝑛×𝑚

Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to 𝑨𝑖 given a trapdoor (a basis) for the matrix

𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

When 𝑨1, … , 𝑨ℓ ← ℤ𝑞
𝑛×𝑚 are uniform and independent:

hardness of SIS implies hardness of BASIS
(follows from standard lattice trapdoor extension techniques)

Vector Commitments from SIS

Common reference string (for inputs of length ℓ):

matrices 𝑨1, … , 𝑨ℓ ∈ ℤ𝑞
𝑛×𝑚

auxiliary data: trapdoor for 𝑩ℓ =
𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

To commit to a vector 𝒙 ∈ ℤ𝑞
ℓ : sample solution (𝒗1, … , 𝒗ℓ, ො𝒄)

𝑨1 −𝑮

⋱ ⋮
𝑨ℓ −𝑮

⋅

𝒗1

⋮
𝒗ℓ

ො𝒄

=

−𝑥1𝒆1

⋮
−𝑥ℓ𝒆ℓ

Commitment is 𝒄 = 𝑮ො𝒄 Openings are 𝒗1, … , 𝒗ℓ

Can commit and open to
arbitrary ℤ𝑞 vectors

Commitments and openings
statistically hide unopened
components

Linearly homomorphic:
𝒄 + 𝒄′ is a commitment to

𝒙 + 𝒙′ with openings 𝒗𝑖 + 𝒗𝑖
′

Functional Commitments for Circuits

Setting: commit to an input 𝒙 ∈ 0,1 ℓ, open to 𝑓(𝒙)

(𝑓 can be an arbitrary Boolean circuit)

Will need some basic lattice machinery for homomorphic computation
[GSW13, BGGHNSVV14, GVW15]

Let 𝑨 ∈ ℤ𝑞
𝑛×𝑚 be an arbitrary matrix

𝑪1 = 𝑨𝑽1 + 𝑥1𝑮

𝑪ℓ = 𝑨𝑽ℓ + 𝑥ℓ𝑮

⋮ 𝑪𝑓 = 𝑨𝑽𝑓 + 𝑓 𝒙 ⋅ 𝑮

𝑪𝑖 is an encoding of 𝑥𝑖 with
(short) randomness 𝑽𝑖

homomorphic
evaluation

𝑪𝑓 is an encoding of 𝑓(𝒙) with

(short) randomness 𝑽𝑓

Functional Commitments for Circuits

Replace random 𝑨𝑖 with a single 𝑨 (and gadget matrix with 𝑾1, … , 𝑾ℓ)

𝑨 ← ℤ𝑞
𝑛×𝑚 , 𝑨𝑖 ≔ 𝑨

𝑾1, … , 𝑾ℓ ← ℤ𝑞
𝑛×𝑛

𝑩ℓ =
𝑨 𝑾𝟏

⋱ ⋮
𝑨 𝑾ℓ

Common reference string contains trapdoor for matrix 𝑩ℓ:

Functional Commitments for Circuits

𝑩ℓ =
𝑨 𝑾𝟏

⋱ ⋮
𝑨 𝑾ℓ

To commit to an input 𝒙 ∈ 0,1 ℓ:
Use trapdoor for 𝑩ℓ to jointly sample 𝑽1, … , 𝑽ℓ, ෡𝑪 that satisfy

𝑨 𝑾𝟏

⋱ ⋮
𝑨 𝑾ℓ

⋅

𝑽1

⋮
𝑽ℓ

𝑪

=
−𝑥1𝑮

⋮
−𝑥ℓ𝑮

Replace random 𝑨𝑖 with a single 𝑨 (and gadget matrix with 𝑾1, … , 𝑾ℓ)

𝑨 ← ℤ𝑞
𝑛×𝑚 , 𝑨𝑖 ≔ 𝑨

𝑾1, … , 𝑾ℓ ← ℤ𝑞
𝑛×𝑛

Functional Commitments for Circuits

𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

⋅

𝑽1

⋮
𝑽ℓ

𝑪

=
−𝑥1𝑮

⋮
−𝑥ℓ𝑮

Commitment relation:

Homomorphic evaluation:

for all 𝑖 ∈ ℓ

𝑨𝑽𝑖 + 𝑾𝑖𝑪 = −𝑥𝑖𝑮

rearranging

−𝑾𝑖𝑪 = 𝑨𝑽𝑖 + 𝑥𝑖𝑮

𝑪1 = 𝑨𝑽1 + 𝑥1𝑮

𝑪ℓ = 𝑨𝑽ℓ + 𝑥ℓ𝑮

⋮ 𝑪𝑓 = 𝑨𝑽𝑓 + 𝑓 𝒙 ⋅ 𝑮

෩𝑪𝑖 = 𝑨𝑽𝑖 + 𝑥𝑖𝑮෩𝑪𝑖 = −𝑾𝑖𝑪
function of just the

commitment 𝑪

Functional Commitments for Circuits

෩𝑪𝑖 = 𝑨𝑽𝑖 + 𝑥𝑖𝑮
෩𝑪𝑖 is an encoding of 𝑥𝑖 with randomness 𝑽𝑖

෩𝑪𝑓 = 𝑨𝑽𝑓,𝑓(𝒙) + 𝑓(𝒙)𝑮
෩𝑪𝑓 is an encoding of 𝑓(𝒙) with randomness 𝑽𝑓,𝑓(𝒙)

compute on
෩𝑪1, … ෩𝑪𝑓

compute on
𝑽1, … , 𝑽ℓ

[GVW15]: independent 𝑽𝑖 is sampled for each
input bit, so commitments 𝑪𝑖 are independent
• long commitment, security from SIS

[WW23a, WW23b]: publish a trapdoor that
allows deriving 𝑪𝑖 (and associated 𝑽𝑖) from a
single commitment ෡𝑪
• short commitment, stronger assumption

𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

⋅

𝑽1

⋮
𝑽ℓ

𝑪

=
−𝑥1𝑮

⋮
−𝑥ℓ𝑮

Commitment relation:

Homomorphic evaluation:

𝑪1 = 𝑨𝑽1 + 𝑥1𝑮

𝑪ℓ = 𝑨𝑽ℓ + 𝑥ℓ𝑮

⋮ 𝑪𝑓 = 𝑨𝑽𝑓 + 𝑓 𝒙 ⋅ 𝑮

෩𝑪𝑖 = −𝑾𝑖𝑪
function of just the

commitment 𝑪

Functional Commitments for Circuits

෩𝑪1 = 𝑨𝑽1 + 𝑥1𝑮

෩𝑪ℓ = 𝑨𝑽ℓ + 𝑥ℓ𝑮

⋮

To verify:

𝑪
෩𝑪𝑖 = −𝑾𝑖𝑪

෩𝑪1, … ෩𝑪ℓ
෩𝑪𝑓

1. Expand commitment

2. Homomorphically evaluate 𝑓

3. Check verification relation

𝑨𝑽𝑓,𝑧 = ෩𝑪𝑓 − 𝑧 ⋅ 𝑮

Opening is 𝑽𝑓,𝑓 𝑥 is

(short) linear function of 𝑽1, … , 𝑽ℓ

Opening to function 𝑓 proceeds exactly as in [GVW15]

𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

⋅

𝑽1

⋮
𝑽ℓ

𝑪

=
−𝑥1𝑮

⋮
−𝑥ℓ𝑮

Commitment relation:

Homomorphic evaluation:

𝑪1 = 𝑨𝑽1 + 𝑥1𝑮

𝑪ℓ = 𝑨𝑽ℓ + 𝑥ℓ𝑮

⋮ 𝑪𝑓 = 𝑨𝑽𝑓 + 𝑓 𝒙 ⋅ 𝑮

Functional Commitments from Lattices

Security follows from ℓ-succinct SIS assumption [Wee23]:

SIS is hard with respect to 𝑨 given a trapdoor (a basis) for the matrix

𝑩ℓ =
𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

where 𝑨 ← ℤ𝑞
𝑛×𝑚 and 𝑾𝑖 ← ℤ𝑞

𝑛×𝑚

Falsifiable assumption but does not appear to reduce to standard SIS

ℓ = 1 case does follow from plain SIS (and when 𝑾𝑖 is very wide)

Open problem: Understanding security or attacks when ℓ > 1

Functional Commitments from Lattices

Common reference string (for inputs of length ℓ):

matrices 𝑨1, 𝑾1, … , 𝑾ℓ ∈ ℤ𝑞
𝑛×𝑚

auxiliary data: trapdoor for 𝑩ℓ =
𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

To commit to a vector 𝒙 ∈ 0,1 ℓ: sample (𝑽1, … , 𝑽ℓ, 𝑪)

𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

⋅

𝑽1

⋮
𝑽ℓ

𝑪

=
−𝑥1𝑮

⋮
−𝑥ℓ𝑮

Commitment is 𝑪 Openings for function 𝑓 is 𝑽1 ⋯ 𝑽ℓ ⋅ 𝑯෩𝑪,𝑓,𝒙

crs = ℓ2 ⋅ poly 𝜆, 𝑑, log ℓ

Scheme supports functions
computable by Boolean circuits

of (bounded) depth 𝑑

𝑪 = poly 𝜆, 𝑑, log ℓ

𝑽𝑓,𝑓 𝒙 = poly 𝜆, 𝑑, log ℓ

Verification time scales with 𝑓
(i.e., size of circuit computing 𝑓)

Summary of Functional Commitments

New methodology for constructing lattice-based commitments:
1. Write down the main verification relation (𝒄 = 𝑨𝑖𝒗𝑖 + 𝑥𝑖𝒕𝑖)
2. Publish a trapdoor for the linear system by the verification relation

Security analysis relies on new 𝑞-type variants of SIS:

SIS with respect to 𝑨 is hard given a trapdoor for a related matrix 𝑩

“Random” variant of the assumption implies vector commitments and reduces to SIS

“Structured” variant (ℓ-succinct SIS) implies functional commitments for circuits
• Structure also enables aggregating openings [see paper for details]

Cryptanalysis of Lattice-Based Knowledge Assumptions

Extractable Functional Commitments

Binding: efficient adversary cannot open 𝜎 to two different values with respect to the same 𝑓

𝝈

𝜋0

𝜋1

𝑓, 𝑦0

𝑓, 𝑦1

Verify crs, 𝜎, 𝑓, 𝑦0 , 𝜋0 = 1

Verify crs, 𝜎, 𝑓, 𝑦1 , 𝜋1 = 1

𝝈 𝜋
𝑓, 𝑦

Extractability: efficient adversary that opens 𝜎 to 𝑦 with respect to 𝑓 must know an 𝑥 such
that 𝑓 𝑥 = 𝑦

𝑥 such that 𝑦 = 𝑓(𝑥)
efficient extractor

Note: 𝑓 could have multiple outputs

Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

𝑨 𝑫

𝒁
𝑻

given (tall) matrices 𝑨, 𝑫 and short preimages 𝒁 of a random target 𝑻

the only way an adversary can produce a short vector 𝒗 such that 𝑨𝒗
is in the image of 𝑫 (i.e., 𝑨𝒗 = 𝑫𝒄) is by setting 𝒗 = 𝒁𝒙

Observe: 𝑨𝒗 for a random (short) 𝒗 is outside the image of 𝑫 (since 𝑫 is tall)

short

Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

𝑨 𝑫

𝒁
𝑻

given (tall) matrices 𝑨, 𝑫 and short preimages 𝒁 of a random target 𝑻

the only way an adversary can produce a short vector 𝒗 such that 𝑨𝒗
is in the image of 𝑫 (i.e., 𝑨𝒗 = 𝑫𝒄) is by setting 𝒗 = 𝒁𝒙

Observe: 𝑨𝒗 for a random (short) 𝒗 is outside the image of 𝑫 (since 𝑫 is tall)

For extractable functional commitments:
• 𝒁 is in the CRS
• Commitment is 𝒄 = 𝑫𝑻𝒙
• Opening is 𝒗 where 𝑨𝒗 = 𝑫𝒄
Extractable since valid opening can be associated with an
honestly-generated commitment

short

Obliviously Sampling a Solution

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKs):

𝑨 𝑫

𝒁
𝑻

This work: algorithm to obliviously sample a solution 𝑨𝒗 = 𝑫𝒄 without knowledge of a linear
combination 𝒗 = 𝒁𝒙

Rewrite 𝑨𝒁 = 𝑫𝑻 as

𝑨 ∣ 𝑫𝑮 ⋅
𝒁

−𝑮−1 𝑻
= 𝟎

If 𝒁 and 𝑻 are wide enough, we
(heuristically) obtain a basis for 𝑨 ∣ 𝑫𝑮

short

Obliviously Sampling a Solution

This work: algorithm to obliviously sample a solution 𝑨𝒗 = 𝑫𝒄 without knowledge of a linear
combination 𝒗 = 𝒁𝒙

Rewrite 𝑨𝒁 = 𝑫𝑻 as

𝑨 ∣ 𝑫𝑮 ⋅
𝒁

−𝑮−1 𝑻
= 𝟎

If 𝒁 and 𝑻 are wide enough, we
(heuristically) obtain a basis for 𝑨 ∣ 𝑫𝑮

Oblivious sampler (Babai rounding):
1. Take any (non-zero) integer solution 𝒚 where 𝑨 ∣ 𝑫𝑮 𝒚 = 𝟎 mod 𝑞
2. Assuming 𝑩∗ is full-rank over ℚ, find 𝒛 such that 𝑩∗𝒛 = 𝒚 (over ℚ)
3. Set 𝒚∗ = 𝒚 − 𝑩∗ 𝒛 = 𝑩∗ 𝒛 − 𝒛 and parse into 𝒗, 𝒄

𝑩∗

Correctness: 𝑨 ∣ 𝑫𝑮 ⋅ 𝒚∗ = 𝑨 ∣ 𝑫𝑮 ⋅ 𝑩∗(𝒛 − ⌊𝒛⌉) = 𝟎 mod 𝑞 and 𝒚∗ is short

Obliviously Sampling a Solution

This work: algorithm to obliviously sample a solution 𝑨𝒗 = 𝑫𝒄 without knowledge of a linear
combination 𝒗 = 𝒁𝒙

Rewrite 𝑨𝒁 = 𝑫𝑻 as

𝑨 ∣ 𝑫𝑮 ⋅
𝒁

−𝑮−1 𝑻
= 𝟎

If 𝒁 and 𝑻 are wide enough, we
(heuristically) obtain a basis for 𝑨 ∣ 𝑫𝑮

Oblivious sampler (Babai rounding):
1. Take any (non-zero) integer solution 𝒚 where 𝑨 ∣ 𝑫𝑮 𝒚 = 𝟎 mod 𝑞
2. Assuming 𝑩∗ is full-rank over ℚ, find 𝒛 such that 𝑩∗𝒛 = 𝒚 (over ℚ)
3. Set 𝒚∗ = 𝒚 − 𝑩∗ 𝒛 = 𝑩∗ 𝒛 − 𝒛 and parse into 𝒗, 𝒄

𝑩∗

Correctness: 𝑨 ∣ 𝑫𝑮 ⋅ 𝒚∗ = 𝑨 ∣ 𝑫𝑮 ⋅ 𝑩∗(𝒛 − ⌊𝒛⌉) = 𝟎 mod 𝑞 and 𝒚∗ is short

This solution is obtained by “rounding” off a long solution

Question: Can we explain such solutions as taking a short
linear combination of 𝒁 (i.e., what the knowledge
assumption asserts)

Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by

the verification equation
3. Use components in the CRS to derive a basis for the related lattice

𝑨𝒗 = 𝑫𝒄
1 2

𝑨 ∣ 𝑫𝑮
𝒗

−𝑮−1 𝒄 = 𝟎

𝑨 ∣ 𝑫𝑮 ⋅
𝒁

−𝑮−1 𝑻
= 𝟎

3

Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by

the verification equation
3. Use components in the CRS to derive a basis for the related lattice

Implications:
• Oblivious sampler for integer variant of knowledge 𝑘-𝑅-ISIS assumption from [ACLMT22]
 Implementation by Martin Albrecht: https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f

• Breaks extractability of the (integer variant of the) linear functional commitment from
[ACLMT22] assuming hardness of inhomogeneous SIS (i.e., existence of efficient extractor
for oblivious sampler implies algorithm for inhomogeneous SIS)

Open question: Can we extend the attacks to break soundness of the SNARK?

https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f

Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)
2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by

the verification equation
3. Use components in the CRS to derive a basis for the related lattice

Implications:
• Oblivious sampler for integer variant of knowledge 𝑘-𝑅-ISIS assumption from [ACLMT22]
 Implementation by Martin Albrecht: https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f

• Breaks extractability of the (integer variant of the) linear functional commitment from
[ACLMT22] assuming hardness of inhomogeneous SIS (i.e., existence of efficient extractor
for oblivious sampler implies algorithm for inhomogeneous SIS)

Open question: Can we extend the attacks to break soundness of the SNARK?

The SNARK considers extractable commitment for quadratic
functions while our current oblivious sampler only works for

linear functions in the case of [ACLMT22]

https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f

Open Questions

(Black-box) functional commitments with fast verification from standard SIS?

Cryptanalysis of lattice-based SNARKs based on knowledge 𝑘-𝑅-ISIS [ACLMT22, CLM23, FLV23]

Our oblivious sampler (heuristically) falsifies the assumption, but does not break existing constructions

Formulation of new lattice-based knowledge assumptions that avoids our attacks

Thank you!

Understanding the hardness of ℓ-succinct SIS (hardness reductions or cryptanalysis)?

	Slide 1: Lattice-Based Functional Commitments: Constructions and Cryptanalysis
	Slide 2: Functional Commitments
	Slide 3: Functional Commitments
	Slide 4: Functional Commitments
	Slide 5: Functional Commitments
	Slide 6: Functional Commitments
	Slide 7: Special Cases of Functional Commitments
	Slide 8: Succinct Functional Commitments
	Slide 9: Framework for Lattice Commitments
	Slide 10: Framework for Lattice Commitments
	Slide 11: Framework for Lattice Commitments
	Slide 12: Our Approach
	Slide 13: Our Approach
	Slide 14: Our Approach
	Slide 15: Our Approach
	Slide 16: Our Approach
	Slide 17: Our Approach
	Slide 18: Proving Security
	Slide 19: Proving Security
	Slide 20: Basis-Augmented SIS (BASIS) Assumption
	Slide 21: Basis-Augmented SIS (BASIS) Assumption
	Slide 22: Vector Commitments from SIS
	Slide 23: Functional Commitments for Circuits
	Slide 24: Functional Commitments for Circuits
	Slide 25: Functional Commitments for Circuits
	Slide 26: Functional Commitments for Circuits
	Slide 27: Functional Commitments for Circuits
	Slide 28: Functional Commitments for Circuits
	Slide 29: Functional Commitments from Lattices
	Slide 30: Functional Commitments from Lattices
	Slide 31: Summary of Functional Commitments
	Slide 32: Cryptanalysis of Lattice-Based Knowledge Assumptions
	Slide 33: Extractable Functional Commitments
	Slide 34: Cryptanalysis of Lattice-Based Knowledge Assumptions
	Slide 35: Cryptanalysis of Lattice-Based Knowledge Assumptions
	Slide 36: Obliviously Sampling a Solution
	Slide 37: Obliviously Sampling a Solution
	Slide 38: Obliviously Sampling a Solution
	Slide 39: Template for Analyzing Lattice-Based Knowledge Assumptions
	Slide 40: Template for Analyzing Lattice-Based Knowledge Assumptions
	Slide 41: Template for Analyzing Lattice-Based Knowledge Assumptions
	Slide 42: Open Questions

