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Functional Commitments
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Q Commit “commitment”
) .0

Commit(crs, x) — (o, st)

Takes a common reference string and commits to an input x

Outputs commitment o and commitment state st



Functional Commitments

Open + Verity

0| TEE——)

Commit(crs, x) — (o, st)
Open(st, /) » m

Takes the commitment state and a function f and outputs an opening

Verify(crs,o, (f,v),m) - 0/1

Checks whether m is valid opening of g to value y with respect to [




Functional Commitments

o

Open + Verity

Binding: efficient adversary cannot open o to two different values
with respect to the same f

. £

o

T[O/ m Verify(crs, o, (f,y),mp) = 1

T4 Verify(crs, o, (f,y1),m1) =1



Functional Commitments

Open + Verity

0| TEE——)

Succinctness: commitments and openings should be short
 Short commitment: |o| = poly(4, log |x|)
* Short opening: || = poly(4,log|x|, |f (x)]|)

Will consider relaxation where || and || can grow with depth of the
circuit computing f



Special Cases of Functional Commitments

Vector commitments:

| ind; (xq, ..., X)) = Xx;

commit to a vector, open at an index

Polynomial commitments:

fo(ag, ..,ag) = ag + ayx + -+ ayzx?
——— [E5

commit to a polynomial, open to the evaluation at x




Succinct Functional Commitments

(not an exhaustive list!)

Scheme Function Class Assumption

[Mer87] vector commitment collision-resistant hash functions
[LY10, CF13, LM19, GRWZ20] vector commitment q-type pairing assumptions

[CF13, LM19, BBF19] vector commitment groups of unknown order

[PPS21] vector commitment short integer solutions (SIS)

[KZG10, Lee20] polynomial commitment q-type pairing assumptions

[BFS19, BHRRS21, BF23] polynomial commitment groups of unknown order

[LRY16] linear functions g-type pairing assumptions
[ACLMT22] constant-degree polynomials k-R-ISIS assumption (falsifiable)
[LRY16] Boolean circuits collision-resistant hash functions + SNARKs
[dCP23] Boolean circuits SIS (non-succinct openings in general)
[KLVW23] Boolean circuits LWE (via batch arguments)

[BCFL23] Boolean circuits twin k-R-ISIS

[WW23a, WW23b] Boolean circuits £-succinct SIS This talk



Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [pps21, ACLMT22]

Common reference string (for inputs of length £):

matrices Ay, ..., Ay € Zg*™

target vectors tq, ..., t, € ZZ

auxiliary data: cross-terms u;; < Ai_l(tj) € Zg' wherei # j

short (i.e., low-norm) vector

satisfying A;u;; = t;



Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [pps21, ACLMT22]

Common reference string (for inputs of length £):

matrices Ay, ..., Ay € Zg*™

L

target vectors tq, ..., t, € ZZ

auxiliary data: cross-terms u;; < Ai_l(tj) € Zg' wherei # j
Commitment to x € Z%: Opening to value y at index i:

short v; suchthatc = A;v; +y - t;
C= Z Xit; Honest opening: Correct as long as x is short
€[ £]
linear combination of target vectors Vi = 2 Wi | Aivg + xit; = z XA + xit; = Z Xty = ¢
J#i j#i jEl£]




Framework for Lattice Commitments

Captures and generalizes other lattice-based functional commitments [pps21, ACLMT22]

Common reference string (for inputs of length £):

matrices Ay, ..., Ay € Zg*™

target vectors tq, ..., t, € ZZ

auxiliary data: cross-terms u;; < Ai_l(tj) € Zg' wherei # j

[PPS21]: A; « Zy™™ and t; « Zj are independent and uniform

suffices for vector commitments (from SIS)

[ACLMTZ].] Ai = WLA and ti = Wl-ul- where Wi «— ngn,A — ngm, Uu; < ZZ

(one candidate adaptation to the integer case)

generalizes to functional commitments for constant-degree polynomials (from k-R-ISIS)




Our Approach

Captures and generalizes other lattice-based functional commitments [pps21, ACLMT22]

Verification invariant: ¢ = A;v; + x;t; Vi € |£]

for a short v;

Our approach: rewrite £ relations as a single linear system

—Al i _I’I’l- -1].1- __xltl-
v [T ,
_ A, —I,| | ¢ | T Xely

I, denotes the identity matrix




Our Approach

Captures and generalizes other lattice-based functional commitments [pps21, ACLMT22]

Verification invariant: ¢ = A;v; + x;t; Vi € |£]

for a short v;

Our approach: rewrite £ relations as a single linear system

_ | o raq - _ _
Al : _G 1).1 —x1 t1
I . . _ ¢
P B R I
S A —X
i Af ! G- L C i tHt “powers of two matrix”

For security and functionality, it
will be useful to write ¢ = G¢




Our Approach

Captures and generalizes other lattice-based functional commitments [pps21, ACLMT22]

Verification invariant: ¢ = A;v; + x;t;

Vi € []

for a short v;

Our approach: rewrite £ relations as a single linear system

4,

A,

—G

—G

v,

—X1t1

—Xolp

Common reference string:
matrices Ay, ..., Ay € Zg*™
target vectors t4, ..., ty € Z’C}

auxiliary data: cross-terms u;; « Ai_l(tj)



Our Approach

Captures and generalizes other lattice-based functional commitments [pps21, ACLMT22]

Verification invariant: ¢ = A;v; + x;t; Vi € |£]

for a short v;

Our approach: rewrite £ relations as a single linear system

4,

A,

—G

_G_
J/

Y

B,

v,

it Common reference string:
X1t matrices 4 A, € Z1*m
. 1, nen ,g q
target vectors t4, ..., ty € Z’C}
—Xplp auxiliary data:

trapdoor for B,

Trapdoor for B, can be used to sample short solutions

x to the linear system B,x = y (for arbitrary y)




Our Approach

Captures and generalizes other lattice-based functional commitments [pps21, ACLMT22]
Verification invariant: ¢ = A;v; + x;t; Vi € |£]

for a short v;

Our approach: rewrite £ relations as a single linear system

Committing to an input x:

A =G| [V [t .
; 3 : Use trapdoor for B, to jointly
| Vol ) sample a solution vy, ..., vy, C
i Ay _G_ . C. __xftf_ ¢ = GC is the commitment and
- ~ / V4, ... Vp are the openings
B,

Supports commitments to arbitrary (i.e., large) values over Z,



Our Approach

Captures and generalizes other lattice-based functional commitments [pps21, ACLMT22]
Verification invariant: ¢ = A;v; + x;t; Vi € |£]

for a short v;

Our approach: rewrite £ relations as a single linear system

Committing to an input x:

A =G| [V [t .
| 3 : Use trapdoor for B, to jointly
! Vol — . sample a solution vy, ..., vy, C
i Ay _G_ . C. __xftf_ ¢ = GC is the commitment and
- ~ / V4, ... Vp are the openings
Bg Supports statistically private openings

(commitment + opening hides unopened positions)



Proving Security

Captures and generalizes other lattice-based functional commitments [pps21, ACLMT22]
Verification invariant: ¢ = A;v; + x;t; Vi € |£]
for a short v;

Short integer solutions (SIS)

Suppose adversary can break binding
given A « Z7*™, hard to find

outputs ¢, (v;, x;), (v}, x) such that short x # 0 such that Ax = 0
C = Aivi + xiti
— Al-v; + .X'l,tl l
v; — v} is a SIS solution for A4;
given matrices 4, ..., 4, set A; « Zp<™ without the first row
target vectors t, ..., t, sett; =e; = [1,0,...,0]"

trapdoor for B,



Proving Security

Captures and generalizes other lattice-based functional commitments [pps21, ACLMT22]

Verification invariant: ¢ = A;v; + x;t; Vi € |£]

for a short v;

Adversary that breaks binding can solve SIS with respect to A;

(technically A; without the first row — which is equivalent to SIS with dimensionn — 1)

but... adversary also gets additional information beyond A4;
y C
1 , Adversary sees

B, =
¢ trapdoor for B,

_G_



Basis-Augmented SIS (BASIS) Assumption

Captures and generalizes other lattice-based functional commitments [pps21, ACLMT22]
Verification invariant: ¢ = A;v; + x;t; Vi € |£]
for a short v;
Adversary that breaks binding can solve SIS with respect to A;

Basis-augmented SIS (BASIS) assumption:

SIS is hard with respect to A;
given a trapdoor (a basis) for the matrix

A,  —G Can simulate CRS from BASIS challenge:
Lo
B, = - matrices Ay, ..., Ay « Zg<™
A, 1 -G trapdoor for B,




Basis-Augmented SIS (BASIS) Assumption

SIS is hard with respect to A; given a trapdoor (a basis) for the matrix
_Al G
Bg = : .
I
Ap

_G_

When A4, ..., A, « ZZX’" are uniform and independent:
hardness of SIS implies hardness of BASIS

(follows from standard lattice trapdoor extension techniques)



Vector Commitments from SIS

Common reference string (for inputs of length £):
Can commit and open to

matrices Ay, ..., A, € Z*™
arbitrary 7, vectors

A, ¢
auxiliary data: trapdoor for B, = 1
4, 1 =G Commitments and openings
statistically hide unopened
To commit to a vector x € Z%: sample solution (vy, ..., vy, €) components
Al : —G Uy —X1€17
| 3 : Linearly homomorphic:
! Vol — ' c + ¢’ is a commitment to
i Ag ! —G_ i T Xp€yp ] x + x' with openings v; + v,

Commitmentis ¢ = G¢C Openings are v4, ..., Uy



Functional Commitments for Circuits

Setting: commit to an input x € {0,1}¢, open to f(x)

(f can be an arbitrary Boolean circuit)

Will need some basic lattice machinery for homomorphic computation

nxm : , [GSW13, BGGHNSVV14, GVW15]
Let A € Zg;™™ be an arbitrary matrix

C, =AV, + x,G homomorphic
. evaluation
= BN -Vt
Cg — AV{ + X{G
C; is an encoding of x; with Cr is an encoding of f(x) with

(short) randomness V; (short) randomness V¢



Functional Commitments for Circuits

Replace random A; with a single A (and gadget matrix with W, ..., W)
A<Z"™ , A=A
Wl, ey Wg — ngn

Common reference string contains trapdoor for matrix B,:
v W
I

A | W{)_




Functional Commitments for Circuits

Replace random A; with a single A (and gadget matrix with W, ..., W)
A—TP™ A=A A W,
Wi, ., W, « T%T By =

To commit to an input x € {0,1}¢:
Use trapdoor for B, to jointly sample V4, ..., Vy, C that satisfy

A wi] |V a6
L
A W, Cg __fo_



Functional Commitments for Circuits

Commitment relation: foralli € [£]
A : Wl- V:1 -—le- AVL + WLC = —XiG
N VA .
A, | AL -6 rearranging

—WLC = AVl + XiG

Homomorphic evaluation:
Cl —_ AV]_ + le

: ) C=AV,+f(x) G
C{) =AVg+X£G

function of just the
commitment C

C,=—W,C C,=AV; + x;G




Functional Commitments for Circuits

~

Commitment relation: C, =AV; + x;G
a : W1- V:1 -_xl G C; is an encoding of x; with randomness V;
1 . * =
1 V, . compute on compute on
A I Wf- i C ] - fo- El' Ef V]_) ey Vf
Homomorphic evaluation: C. = AV G
r=AVir +/(X)
€ =AV; +x,6 C; is an encoding of f(x) with randomness V
z ) =AUV, +f(x)-6 |’ FIe
C»= AV, + x.G [GVW15]: independent V; is sampled for each
t ¢ ¢ input bit, so commitments C; are independent

* long commitment, security from SIS

[WW23a, WW23b]: publish a trapdoor that

funCtlon_OfJUSt the Ei — _WiC allows deriving C; (and associated V;) from a
commitment € single commitment C

* short commitment, stronger assumption




Functional Commitments for Circuits

Commitment relation: To verify:
_ - 'V T _ - -
4 Wl —x1G 1. Expand commitment
. 1 . ) — .
e V ' r
A Wg_ C{) _—X{)G_ T = —W.C Cl — AVl + le

Homomorphic evaluation:

Cl —_ AV]_ + le

E{) = AVg + XgG

‘ Cr=AVy + f(x)-G 2. Homomorphically evaluate f

C{)=AV£+XgG ~ ~ ~
Cy,..C, mmp C,

Openingis V¢ ¢y is
(short) linear functionof V4, ..., V,

3. Check verification relation

Opening to function f proceeds exactly as in [GVW15] AVf Z = Cf —z-G



Functional Commitments from Lattices

Security follows from €-succinct SIS assumption [wee23]:

SIS is hard with respect to A given a trapdoor (a basis) for the matrix
y W
Bg = : .

A W,

where A « Zg"™ and W; « Zg™™

Falsifiable assumption but does not appear to reduce to standard SIS

£ = 1 case does follow from plain SIS (and when W is very wide)

Open problem: Understanding security or attacks when £ > 1



Functional Commitments from Lattices

Common reference string (for inputs of length £):
matrices Ay, W, ..., W, € Z7*™

A ' Wy

auxiliary data: trapdoor for B, = I

A, W,

To commit to a vector x € {0,1}*: sample (V4, ..., V,, C)

A W, V} —x,G
' iy (=]
_ AL w,| |7 |—x6

Scheme supports functions

computable by Boolean circuits
of (bounded) depth d

|crs| = €2 - poly(4,d, log ¢)
|C| = poly(4,d,log )
Vs ro| = poly(2,d,1og ¢)

Verification time scales with |f|
(i.e., size of circuit computing f)

Commitmentis C Openings for function fis [V | ---| V] - Hg ¢,



Summary of Functional Commitments

New methodology for constructing lattice-based commitments:
1. Write down the main verification relation (c = A;v; + x;t;)
2. Publish a trapdoor for the linear system by the verification relation

Security analysis relies on new g-type variants of SIS:

SIS with respect to A is hard given a trapdoor for a related matrix B
“Random” variant of the assumption implies vector commitments and reduces to SIS

“Structured” variant (£-succinct SIS) implies functional commitments for circuits
e Structure also enables aggregating openings [see paper for details]



Cryptanalysis of Lattice-Based Knowledge Assumptions




Extractable Functional Commitments

Binding: efficient adversary cannot open o to two different values with respect to the same [

T[O/ m Verify(crs, o, (f,y),my) = 1
\ m Verify(crs, o, (f,y1), 1) = 1

Extractability: efficient adversary that opens o to y with respect to f must know an x such

that f(x) =y _
I efficient extractor x such thaty = f(x)
O I
‘ m Note: f could have multiple outputs

9




Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKSs):
]
]

short

given (tall) matrices A, D and short preimages Z of a random target T

the only way an adversary can produce a short vector v such that Av
is in the image of D (i.e., Av = Dc) is by setting v = Zx

Observe: Av for a random (short) v is outside the image of D (since D is tall)



Cryptanalysis of Lattice-Based Knowledge Assumptions

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKSs):

For extractable functional commitments:
Z is in the CRS
Commitmentisc = DTx

Opening is v where Av = Dc
Extractable since valid opening can be associated with an
honestly-generated commitment

short

given (tall) matrices A, D and short preimages Z of a random target T

the only way an adversary can produce a short vector v such that Av
is in the image of D (i.e., Av = Dc) is by setting v = Zx

Observe: Av for a random (short) v is outside the image of D (since D is tall)



Obliviously Sampling a Solution

Typical lattice-based knowledge assumption (to get extractable commitments / SNARKSs):
]
]

short

This work: algorithm to obliviously sample a solution Av = Dc without knowledge of a linear
combinationv = Zx

Rewrite AZ = DT as

(4| DG - [G

] If Z and T are wide enough, we
L (heuristically) obtain a basis for [A | DG]




Obliviously Sampling a Solution

This work: algorithm to obliviously sample a solution Av = Dc without knowledge of a linear
combination v = Zx

Rewrite AZ = DT as

41 DG - [ Z B It Z and T are wide enough, we
G (T (heuristically) obtain a basis for [A | DG]
—
B*

Oblivious sampler (Babai rounding):
1. Take any (non-zero) integer solution y where [A | DG]y = 0 mod ¢
2. Assuming B* is full-rank over @, find z such that B*z = y (over Q)
3. Sety* =y — B*|z]| = B*(z— |z|) and parse into v, c

Correctness: [A | DG| - y* = [A | DG] - B*(z — |z]) = 0 mod q and y”* is short



Obliviously Sampling a Solution

This work: algorithm to obliviously sample a solution Av = Dc without knowledge of a linear
combination v = Zx

Rewrite AZ = DT as

41 DG - [ Z B It Z and T are wide enough, we
G (T (heuristically) obtain a basis for [A | DG]
—

B This solution is obtained by “rounding” off a long solution

Oblivious sampler (Babai roun
1. Take any (non-zero) inte
2. Assuming B™ is full-ran
3. Sety*=y—B*|z] =

Question: Can we explain such solutions as taking a short
linear combination of Z (i.e., what the knowledge
assumption asserts)

Correctness: [A | DG| - y* = [A | DG] - B*(z — |z]) = 0 mod q and y”* is short



Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)

2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by
the verification equation

3. Use components in the CRS to derive a basis for the related lattice

® @
Av = Dc ‘ [A | DG] [—szl(C)] =0

$

©,

41DG]- [ G- 1(T)]



Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)

2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by
the verification equation

3. Use components in the CRS to derive a basis for the related lattice

Implications:
* Oblivious sampler for integer variant of knowledge k-R-ISIS assumption from [ACLMT22]
Implementation by Martin Albrecht: https://gist.github.com/malb/7c8b86520c675560be62edad8dabla6t
* Breaks extractability of the (integer variant of the) linear functional commitment from
[ACLMT22] assuming hardness of inhomogeneous SIS (i.e., existence of efficient extractor
for oblivious sampler implies algorithm for inhomogeneous SIS)
Open question: Can we extend the attacks to break soundness of the SNARK?



https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f

Template for Analyzing Lattice-Based Knowledge Assumptions

1. Start with the key verification relation (i.e., knowledge of a short solution to a linear system)

2. Express verification relation as finding non-zero vector in the kernel of a lattice defined by
the verification equation

3. Use components in the CRS to derive a basis for the related lattice

Implications:

e Oblivious sampler for intege : : .
_ P _ 8 The SNARK considers extractable commitment for quadratic
Implementation by Martin Albrec : : . .
functions while our current oblivious sampler only works for

* Breaks extractability of the ) s
linear f h f [ACLMT22
[ACLMT22] assuming hardn inear functions in the case of [AC ]

for oblivious sampler implies algorithm Tor INnnoMogeneous
Open question: Can we extend the attacks to break soundness of the SNARK?


https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f

Open Questions

Understanding the hardness of £-succinct SIS (hardness reductions or cryptanalysis)?

(Black-box) functional commitments with fast verification from standard SIS?

Cryptanalysis of lattice-based SNARKs based on knowledge k-R-ISIS [ACLMT22, CLM23, FLV23]

Our oblivious sampler (heuristically) falsifies the assumption, but does not break existing constructions

Formulation of new lattice-based knowledge assumptions that avoids our attacks

Thank youl!
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