Lattice-Based Succinct Non-Interactive Arguments

David Wu
Stanford University

based on joint works with Dan Boneh, Yuval Ishai, and Amit Sahai
Proof Systems and Argument Systems

Completeness: \(\forall x \in \mathcal{L} : \Pr[\langle P, V \rangle(x) = \text{accept}] = 1 \)

"Honest prover convinces honest verifier of true statements"

\(\mathcal{L}_C = \{ x : C(x, w) = 1 \text{ for some } w \} \)

Soundness: \(\forall x \notin \mathcal{L}, \forall P^* : \Pr[\langle P^*, V \rangle(x) = \text{accept}] \leq \varepsilon \)

"No prover can convince honest verifier of false statement"
Proof Systems and Argument Systems

\[\mathcal{L}_C = \{ x : C(x,w) = 1 \text{ for some } w \} \]

Completeness:
\[\forall x \in \mathcal{L} : \Pr[\langle P, V \rangle(x) = \text{accept}] = 1 \]

"Honest prover convinces honest verifier of true statements"

Soundness:
\[\forall x \notin \mathcal{L}, \forall P^* : \Pr[\langle P^*, V \rangle(x) = \text{accept}] \leq \varepsilon \]

"No prover can convince honest verifier of false statement"

In an argument system, we relax soundness to only consider computationally-bounded (i.e., polynomial-time) provers \(P^* \)
Succinct Arguments

$x \in \{0,1\}^*$

$\mathcal{L}_C = \{x : C(x, w) = 1 \text{ for some } w\}$

Argument system is **succinct** if:
- Communication is $\text{poly}(\lambda + \log|C|)$
- V can be implemented by a circuit of size $\text{poly}(\lambda + |x| + \log|C|)$

Verifier complexity significantly smaller than classic NP verifier

[Kil92]
Succinct Non-Interactive Arguments (SNARGs)

$\mathcal{L}_C = \{x : C(x, w) = 1 \text{ for some } w\}$

$\pi = P(x, w)$

Argument system is **succinct** if:

- Communication is $\text{poly}(\lambda + \log|C|)$
- V can be implemented by a circuit of size $\text{poly}(\lambda + |x| + \log|C|)$

For general NP languages, succinct non-interactive arguments are unlikely to exist in the standard model [BP04, Wee05]
Succinct Non-Interactive Arguments (SNARGs)

Instantiation: “CS proofs” in the random oracle model

\[\pi = P^{RO}(x, w) \]

Argument consists of a single message

\[x \rightarrow \pi = P^{RO}(x, w) \rightarrow V^{RO}(x, \pi) = 1 \]

accept if \[V^{RO}(x, \pi) = 1 \]
Succinct Non-Interactive Arguments (SNARGs)

Preprocessing SNARGs: allow “expensive” setup

Can consider publicly-verifiable and secretly-verifiable SNARGs

common reference string (CRS)

setup \(1^\lambda\)

\[\sigma \rightarrow \tau\]

prover

\((x, w)\)

verifier

\(\pi = P(\sigma, x, w)\)

Argument consists of a single message

\[x\]

accept if \(V(\tau, x, \pi) = 1\)
Complexity Metrics for SNARGs

Soundness: for all provers P^* of size 2^λ:

$$x \notin \mathcal{L}_C \implies \Pr[V(x, P^*(x)) = 1] \leq 2^{-\lambda}$$

How short can the proofs be?

$$|\pi| = \Omega(\lambda)$$

Even in the designated-verifier setting

How much work is needed to generate the proof?

$$|P| = \Omega(|C|)$$
Quasi-Optimal SNARGs

Soundness: for all provers P^* of size 2^λ:

$$x \notin \mathcal{L}_C \implies \Pr[V(x, P^*(x)) = 1] \leq 2^{-\lambda}$$

A SNARG (for Boolean circuit satisfiability) is quasi-optimal if it satisfies the following properties:

- **Quasi-optimal succinctness:**
 $$|\pi| = \lambda \cdot \text{polylog}(\lambda, |C|) = \tilde{O}(\lambda)$$

- **Quasi-optimal prover complexity:**
 $$|P| = \tilde{O}(|C|) + \text{poly}(\lambda, \log|C|)$$
Asymptotic Comparisons

<table>
<thead>
<tr>
<th>Construction</th>
<th>Prover Complexity</th>
<th>Proof Size</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS Proofs [Mic94]</td>
<td>$\tilde{O}(</td>
<td>C</td>
<td>)$</td>
</tr>
<tr>
<td>Groth [Gro16]</td>
<td>$\tilde{O}(\lambda</td>
<td>C</td>
<td>)$</td>
</tr>
<tr>
<td>Groth [Gro10]</td>
<td>$\tilde{O}(\lambda</td>
<td>C</td>
<td>^2 +</td>
</tr>
<tr>
<td>GGPR [GGPR12]</td>
<td>$\tilde{O}(\lambda</td>
<td>C</td>
<td>)$</td>
</tr>
<tr>
<td>BCIOP (Pairing) [BCIOP13]</td>
<td>$\tilde{O}(\lambda</td>
<td>C</td>
<td>)$</td>
</tr>
<tr>
<td>BISW (integer lattices) [BISW17]</td>
<td>$\tilde{O}(\lambda</td>
<td>C</td>
<td>)$</td>
</tr>
<tr>
<td>BISW (ideal lattices) [BISW18]</td>
<td>$\tilde{O}(</td>
<td>C</td>
<td>)$</td>
</tr>
</tbody>
</table>

For simplicity, we ignore low order terms $\text{poly}(\lambda, \log|C|)$ in the prover complexity.
Constructing (Quasi-Optimal) SNARGs

New framework for building preprocessing SNARGs (following [BCIO13]):

Step 1 (information-theoretic):
- Identify useful information-theoretic building block (linear PCPs and linear MIPs)

Step 2 (cryptographic):
- Use cryptographic primitives to compile information-theoretic building block into a preprocessing SNARG

Instantiating our framework yields new lattice-based SNARG candidates
Linear PCPs

PCP where the proof oracle implements a linear function $\pi \in \mathbb{F}^m$

Several possible instantiations: based on the Walsh-Hadamard code [ALMSS92] or quadratic span programs [GGPR13]

In these instantiations, verifier is oblivious (queries independent of statement)

Verifier

Accept/reject

(x, w)

$\pi \in \mathbb{F}^m$

$q \in \mathbb{F}^m$

$\langle q, \pi \rangle \in \mathbb{F}$
From Linear PCPs to SNARGs

Oblivious verifier can “commit” to its queries ahead of time

\[Q = \begin{bmatrix} q_1 & q_2 & q_3 & \cdots & q_k \end{bmatrix} \]

part of the CRS

Prover constructs linear PCP \(\pi \) from \((x, w)\)

\[(x, w) \]

\[\pi \in \mathbb{F}^m \]

Prover computes responses to linear PCP queries

\[\langle \pi, q_1 \rangle, \langle \pi, q_2 \rangle, \cdots, \langle \pi, q_k \rangle \]

SNARG proof

[BCIOP13]
Two issues:
- Malicious prover can choose \(\pi \) based on the queries
- Malicious prover can apply different \(\pi \) to each query

Oblivious verifier can “commit” to its queries ahead of time

\[
Q = q_1 q_2 q_3 \ldots q_k
\]

Prover computes responses to linear PCP queries

\[
\langle \pi, q_1 \rangle \quad \langle \pi, q_2 \rangle \quad \ldots \quad \langle \pi, q_k \rangle
\]

SNARG proof
From Linear PCPs to SNARGs

Oblivious verifier can “commit” to its queries ahead of time

\[Q = \langle \pi, q_1 \rangle \langle \pi, q_2 \rangle \cdots \langle \pi, q_k \rangle \]

Two issues:
• Malicious prover can choose \(\pi \) based on the queries
• Malicious prover can apply different \(\pi \) to each query

Prover computes responses to linear PCP queries

SNARG proof
From Linear PCPs to SNARGs

Oblivious verifier can “commit” to its queries ahead of time

\[Q = \begin{bmatrix} q_1 & q_2 & q_3 & \cdots & q_k \end{bmatrix} \]

Two issues:

- Malicious prover can choose \(\pi \) based on the queries
- Malicious prover can apply different \(\pi \) to each query

Step 1: Verifier encrypts its queries using an additively homomorphic encryption scheme

- Prover homomorphically computes \(Q^T \pi \)
- Verifier decrypts encrypted response vector and applies linear PCP verification
From Linear PCPs to SNARGs

Two issues:
• Malicious prover can choose π based on the queries
• Malicious prover can apply different π to each query

Oblivious verifier can “commit” to its queries ahead of time

$Q = \begin{bmatrix} q_1 & q_2 & q_3 & \cdots & q_k \end{bmatrix}$

part of the CRS

Step 1: Verifier encrypts its queries using an additively homomorphic encryption scheme
• Prover homomorphically computes $Q^T \pi$
• Verifier decrypts encrypted response vector and applies linear PCP verification
From Linear PCPs to SNARGs

Oblivious verifier can “commit” to its queries ahead of time

\[Q = q_1, q_2, q_3, \ldots, q_k \]

Two issues:
- Malicious prover can choose \(\pi \) based on the queries
- Malicious prover can apply different \(\pi \) to each query

Step 2: Conjecture that the encryption scheme only supports a limited subset of homomorphic operations (linear-only vector encryption)
Differs from [BCIOP13] compiler which relies on additional consistency checks to build a preprocessing SNARG

Using linear-only vector encryption allows for efficient instantiation from lattices (resulting SNARG satisfies quasi-optimal succinctness)

Step 2: Conjecture that the encryption scheme only supports a limited subset of homomorphic operations (linear-only vector encryption)
Linear-Only Vector Encryption

\[v_1 \in \mathbb{F}^k \]
\[v_2 \in \mathbb{F}^k \]
\[\vdots \]
\[v_m \in \mathbb{F}^k \]

plaintext space is a \textit{vector} space
Linear-Only Vector Encryption

\(\nu_1 \in \mathbb{F}^k \)

\(\nu_2 \in \mathbb{F}^k \)

\(\vdots \)

\(\nu_m \in \mathbb{F}^k \)

The plaintext space is a \textit{vector} space.

\[\sum_{i \in [n]} \alpha_i \nu_i \in \mathbb{F}^k \]

The encryption scheme is semantically-secure and additively homomorphic.
Linear-Only Vector Encryption

For all adversaries, there is an efficient extractor such that if \(ct \) is valid, then the extractor is able to produce a vector of coefficients \((\alpha_1, \ldots, \alpha_m) \in \mathbb{F}^m \) and \(b \in \mathbb{F}^k \) such that
\[
\text{Decrypt}(sk, ct) = \sum_{i \in [n]} \alpha_i v_i + b
\]
[Weaker property also suffices]
From Linear PCPs to SNARGs

Oblivious verifier can “commit” to its queries ahead of time

\[Q = \langle \pi, q_1 \rangle \langle \pi, q_2 \rangle \cdots \langle \pi, q_k \rangle \]

Prover constructs linear PCP from \((x, w)\)

Prover computes responses to linear PCP queries

Linear-only vector encryption ensures that all prover strategies can be explained by a linear function \(\Rightarrow\) can appeal to soundness of underlying linear PCP to argue soundness

Prover computes responses to linear PCP queries

SNARG proof
Conjecture: Regev-based encryption (specifically, the [PVW08] variant) is a linear-only vector encryption scheme.

PVW decryption (for plaintexts with dimension k):

Each row of S can be viewed as an independent Regev secret key.
Complexity of the Construction

Prover constructs linear PCP π from (x, w)

$(x, w) \rightarrow \pi \in \mathbb{F}^m$

Prover computes responses to linear PCP queries

$\langle \pi, q_1 \rangle, \langle \pi, q_2 \rangle, \ldots, \langle \pi, q_k \rangle$

Proof consists of a single ciphertext: total length $O(\lambda)$ bits

Evaluating inner product requires $\Omega(|C|)$ homomorphic operations;
prover complexity:

$\Omega(\lambda) \cdot \Omega(|C|) = \Omega(\lambda |C|)$

$Q = \begin{bmatrix} q_1 & q_2 & q_3 & \cdots & q_k \end{bmatrix}$

Proof consists of a single ciphertext: total length $O(\lambda)$ bits
Asymptotic Comparisons

<table>
<thead>
<tr>
<th>Construction</th>
<th>Prover Complexity</th>
<th>Proof Size</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS Proofs [Mic94]</td>
<td>(\tilde{O}(\lvert C \rvert))</td>
<td>(\tilde{O}(\lambda^2))</td>
<td>Random Oracle</td>
</tr>
<tr>
<td>Groth [Gro16]</td>
<td>(\tilde{O}(\lambda \lvert C \rvert))</td>
<td>(\tilde{O}(\lambda))</td>
<td>Generic Group</td>
</tr>
<tr>
<td>Groth [Gro10]</td>
<td>(\tilde{O}(\lambda \lvert C \rvert^2 + \lvert C \rvert \lambda^2))</td>
<td>(\tilde{O}(\lambda))</td>
<td>Knowledge of Exponent</td>
</tr>
<tr>
<td>GGPR [GGPR12]</td>
<td>(\tilde{O}(\lambda \lvert C \rvert))</td>
<td>(\tilde{O}(\lambda))</td>
<td></td>
</tr>
<tr>
<td>BCIOP (Pairing) [BCIOP13]</td>
<td>(\tilde{O}(\lambda \lvert C \rvert))</td>
<td>(\tilde{O}(\lambda))</td>
<td>Linear-Only Encryption</td>
</tr>
<tr>
<td>BISW (integer lattices) [BISW17]</td>
<td>(\tilde{O}(\lambda \lvert C \rvert))</td>
<td>(\tilde{O}(\lambda))</td>
<td>Linear-Only Vector Encryption</td>
</tr>
</tbody>
</table>

For simplicity, we ignore low order terms \(\text{poly}(\lambda, \log \lvert C \rvert)\) in the prover complexity.
Towards Quasi-Optimality

Prover constructs linear PCP π from (x, w)

We pay $\Omega(\lambda)$ for each homomorphic operation. Can we reduce this?

Proof consists of a constant number of ciphertexts: total length $O(\lambda)$ bits

$Q = \langle \pi, q_1 \rangle \langle \pi, q_2 \rangle \cdots \langle \pi, q_k \rangle$

Evaluating inner product requires $\Omega(|C|)$ homomorphic operations; prover complexity:

$\Omega(\lambda) \cdot \Omega(|C|) = \Omega(\lambda|C|)$
Consider encryption scheme over a polynomial ring $R_p = \mathbb{Z}_p[x]/\Phi_d(x) \cong \mathbb{F}_p^{\ell}$.

Plaintext space can be viewed as a vector of field elements.

Using RLWE-based encryption schemes, can encrypt $\ell = \tilde{O}(\lambda)$ field elements ($p = \text{poly}(\lambda)$) with ciphertexts of size $\tilde{O}(\lambda)$.

Homomorphic operations correspond to component-wise additions and scalar multiplications.
Consider encryption scheme over a polynomial ring \(R_p = \mathbb{Z}_p[x]/\Phi_d(x) \cong \mathbb{F}_p^\ell \)

Plaintext space can be viewed as a vector of field elements

Using RLWE-based encryption schemes, can encrypt \(\ell = \tilde{O}(\lambda) \) field elements (\(p = \text{poly}(\lambda) \)) with ciphertexts of size \(\tilde{O}(\lambda) \)

Homomorphic operations

Amortized cost of homomorphic operation on a single field element is \(\text{polylog}(\lambda) \)
Given encrypted set of query vectors, prover can homomorphically apply independent linear functions to each slot.

Key idea: Check multiple independent proofs in parallel.
Linear Multi-Prover Interactive Proofs (MIPs)

Verifier has oracle access to multiple linear proof oracles
[Proofs may be correlated]

Can convert linear MIP to preprocessing SNARG using linear-only (vector) encryption over rings
Suppose

- Number of provers $\ell = \tilde{O}(\lambda)$
- Proofs $\pi_1, \ldots, \pi_\ell \in \mathbb{F}_p^m$ where $m = |C|/\ell$
- Number of queries to each π_i is $\text{polylog}(\lambda)$

Then, linear MIP is quasi-optimal
Suppose

- Number of provers $\ell = \tilde{O}(\lambda)$
- Proofs $\pi_1, \ldots, \pi_\ell \in \mathbb{F}^m_p$ where $m = |C|/\ell$
- Number of queries to each π_i is $\text{polylog}(\lambda)$

Then, linear MIP is quasi-optimal

Prover complexity:
$\tilde{O}(\ell m) = \tilde{O}(|C|)$

Linear MIP size:
$O(\ell \cdot \text{polylog}(\lambda)) = \tilde{O}(\lambda)$
This work: Construction of a quasi-optimal linear MIP for Boolean circuit satisfiability
Robust Decomposition

Statement-witness for C

(x, w) Encode

$x_1', x_2', x_3', \ldots, x_n'$

Only depends on x

f_1, f_2, \ldots, f_ℓ

Statement-witness for f_1, \ldots, f_ℓ

$w_1', w_2', w_3', \ldots, w_h'$

Each constraint only needs to read a subset of the input bits

Decompose C into constraint functions f_1, \ldots, f_ℓ, where each constraint can be computed by a circuit of size s/ℓ

Boolean circuit C of size s
Robust Decomposition

Decompose C into constraint functions f_1, \ldots, f_ℓ, where each constraint can be computed by a circuit of size s/ℓ.

Each constraint only needs to read a subset of the input bits.

Statement-witness for C (x, w)

Statement-witness for f_1, \ldots, f_ℓ

Encode

Only depends on x
Robust Decomposition

(\(x, w\)) Encode

\(x'_1, x'_2, x'_3, \ldots, x'_n\)

\(w'_1, w'_2, w'_3, \ldots, w'_h\)

\(f_1, f_2, \ldots, f_\ell\)

Statement-witness for \(C\)

Statement-witness for \(f_1, \ldots, f_\ell\)

Each constraint only needs to read a subset of the input bits

Decompose \(C\) into constraint functions \(f_1, \ldots, f_\ell\), where each constraint can be computed by a circuit of size \(s/\ell\)

Boolean circuit \(C\) of size \(s\)
Robust Decomposition

Completeness: If $C(x, w) = 1$, then $f_i(x', w') = 1$ for all i

Robustness: If $x \notin \mathcal{L}$, then for all w', at most $2/3$ of $f_i(x', w') = 1$

Efficiency: (x', w') can be computed by a circuit of size $\tilde{O}(s)$

Boolean circuit C of size s
Robust Decomposition

Boolean circuit \mathcal{C} of size s

$f_1 \rightarrow f_2 \rightarrow \cdots \rightarrow f_\ell$

$\pi_1, \pi_2, \ldots, \pi_\ell$

(x, w) Encode (x', w')

Statement-witness for \mathcal{C} Statement-witness for f_1, \ldots, f_ℓ

Using linear PCP based on QSPs [GGPR13], $|\pi_i| = O(|\mathcal{C}|/\ell)$ and provides soundness $1/poly(\lambda)$

π_i: linear PCP that $f_i(x', \cdot)$ is satisfiable

(instantiated over \mathbb{F}_p where $p = poly(\lambda)$)
Robust Decomposition

Boolean circuit C of size s

π_i: linear PCP that $f_i(x', \cdot)$ is satisfiable (instantiated over \mathbb{F}_p where $p = \text{poly}(\lambda)$)

Verifier invokes linear PCP verifier for each instance

(x, w) \[\text{Encode} \rightarrow\] (x', w')

Statement-witness for C

Statement-witness for f_1, \ldots, f_ℓ
Robust Decomposition

Boolean circuit C of size s

π_1: linear PCP that $f_1(x', \cdot)$ is satisfiable (instantiated over \mathbb{F}_p where $p = \text{poly}(\lambda)$)

π_2: linear PCP that $f_2(x', \cdot)$ is satisfiable (instantiated over \mathbb{F}_p where $p = \text{poly}(\lambda)$)

\vdots

π_ℓ: linear PCP that $f_\ell(x', \cdot)$ is satisfiable (instantiated over \mathbb{F}_p where $p = \text{poly}(\lambda)$)

Completeness: Follows by completeness of decomposition and linear PCPs

Soundness: Each linear PCP provides $1/\text{poly}(\lambda)$ soundness and for false statement, at least $1/3$ of the statements are false, so if $\ell = \Omega(\lambda)$, verifier accepts with probability $2^{-\Omega(\lambda)}$
Robust Decomposition

Robustness: If $x \not\in \mathcal{L}$, then for all w', at most $2/3$ of $f_i(x',w') = 1$.

For false x, no single w' can simultaneously satisfy $f_i(x',\cdot)$; however, all of the $f_i(x',\cdot)$ could individually be satisfiable.

Completeness: Follows by completeness of decomposition and linear PCPs.

Soundness: Each linear PCP provides $1/poly(\lambda)$ soundness and for false statement, at least $1/3$ of the statements are false, so if $\ell = \Omega(\lambda)$, verifier accepts with probability $2^{-\Omega(\lambda)}$.

Problematic however if prover uses different (x',w') to construct proofs for different f_i's.
Consistency Checking

Require that linear PCPs are **systematic**: linear PCP π contains a copy of the witness:

$$
\begin{align*}
\pi_1 & : w'_1, w'_3 \quad \text{other components} \\
\pi_2 & : w'_1, w'_2 \quad \text{other components} \\
\pi_3 & : w'_2, w'_3 \quad \text{other components}
\end{align*}
$$

Goal: check that assignments to w' are consistent via linear queries to π_i

First few components of proof correspond to witness associated with the statement

Each proof induces an assignment to a few bits of the common witness w'
Robust decomposition can be instantiated by combining “MPC-in-the-head” paradigm [IKOS07] with a robust MPC protocol with polylogarithmic overhead [DIK10]

- Checking satisfiability of C corresponds to checking satisfiability of f_1, \ldots, f_ℓ (each of which can be checked by a circuit of size $|C|/\ell$)
- For a false statement, no single witness can simultaneously satisfy more than a constant fraction of f_i
Robust Decomposition

- Checking satisfiability of C corresponds to checking satisfiability of f_1, \ldots, f_ℓ (each of which can be checked by a circuit of size $|C|/\ell$)
- For a false statement, no single witness can simultaneously satisfy more than a constant fraction of f_i

Consistency Check

- Check that consistent witness is used to prove satisfiability of each f_i
- Relies on pairwise consistency checks and permuting the entries to obtain a “nice” replication structure

Quasi-Optimal Linear MIP
Asymptotic Comparisons

<table>
<thead>
<tr>
<th>Construction</th>
<th>Prover Complexity</th>
<th>Proof Size</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS Proofs [Mic94]</td>
<td>$\tilde{O}(</td>
<td>C</td>
<td>)$</td>
</tr>
<tr>
<td>Groth [Gro16]</td>
<td>$\tilde{O}(\lambda</td>
<td>C</td>
<td>)$</td>
</tr>
<tr>
<td>Groth [Gro10]</td>
<td>$\tilde{O}(\lambda</td>
<td>C</td>
<td>^2 +</td>
</tr>
<tr>
<td>GGPR [GGPR12]</td>
<td>$\tilde{O}(\lambda</td>
<td>C</td>
<td>)$</td>
</tr>
<tr>
<td>BCIOP (Pairing) [BCIOP13]</td>
<td>$\tilde{O}(\lambda</td>
<td>C</td>
<td>)$</td>
</tr>
<tr>
<td>BISW (integer lattices) [BISW17]</td>
<td>$\tilde{O}(\lambda</td>
<td>C</td>
<td>)$</td>
</tr>
<tr>
<td>BISW (ideal lattices) [BISW18]</td>
<td>$\tilde{O}(</td>
<td>C</td>
<td>)$</td>
</tr>
</tbody>
</table>

For simplicity, we ignore low order terms $\text{poly}(\lambda, \log|C|)$ in the prover complexity.
Conclusions

Introduced framework for building SNARGs by combining linear PCPs (and linear MIPs) with linear-only vector encryption

Framework yields first quasi-optimal SNARG by combining quasi-optimal linear MIP with linear-only vector encryption

• Construction of a quasi-optimal linear MIP possible by combining robust decomposition and consistency check
Open Problems

Publicly-verifiable SNARGs from lattices

Quasi-optimal zero-knowledge SNARGs

Concrete efficiency of lattice-based SNARGs

Thank you!

https://cs.stanford.edu/~dwu4/snargs-project.html