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Argument Systems

NP language L € {0,1}"

Prover Verifier
Completeness: Vx € L: Pr[(P,V)(x) = accept] =1
“Honest prover convinces honest verifier of true statements”
Soundness: Vx & L, V efficient P* : Pr[(P*,V)(x) = accept] < ¢

“Efficient prover cannot convince honest verifier of false statement”



How Short Can a Proof Be?

This talk: laconic arguments for NP

NP language L € {0,1}"

Prover Verifier

Succinctness: || = poly(4, log|C]|)
“Proof size is much shorter than circuit size of classic NP verifier”



How Short Can a Proof Be?

This talk: laconic arguments for NP

NP language L € {0,1}"

N A
Sometimes, also require that A=Y
Prover 2l verification complexity is : Verifier

sublinear/polylogarithmic

Succinctness: || = poly(4, log|C]|)
“Proof size is much shorter than circuit size of classic NP verifier”



How Short Can a Proof Be?

This talk: laconic arguments for NP

NP language L € {0,1}"

Prover Verifier

Focus of this talk: 2-message arguments
Special case: If verifier’'s message is statement-independent =
succinct non-interactive argument (SNARG) in the CRS model




How Short Can a Proof Be?

Using indistinguishability obfuscation: 128-bit proofs (at 128-bit security level) [SW14]

Many practical (“implementable”) SNARGs are based on groups

[GGPR13]
[Gro10] [Lip12] [BCIOP13] [DFGK14][Grol6]
42 39 7 4 3

Number of (pairing) group elements
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How Short Can a Proof Be?

Using indistinguishability obfuscation: 128-bit proofs (at 128-bit security level) [SW14]

\VEINRISing PCPs) can obtain a(designated=" HleRelgR={gell[eX

verifier) SNARG where proofs are 2
group elements (with inverse [GGPR13]

polynomial soundness) [BCIOP13] [DFGK14][Gro16]

42 39

Number of (pairing) group el

Just slightly over 1000 bits
(at 128-bit security level)

Concretely-efficient arguments where proofs consist of 2 group elements?

Arguments where proof consists of 1 group element?



Summary of Results

Group Information-Theoretic Soundness Completeness Argument
Construction  Type Proof Size Building Block Error Error Type
[Gro16] bilinear 2|G,| + |G, | linear PCP negl(A) 0 SNARG
[BCIOP13] linear 8|G] linear PCP 1/poly(A) 0 dvSNARG
[BCIOP13] linear 2| G| PCP 1/poly(1) 0 dvSNARG
This work linear 2|G] linear PCP 1/poly(1) negl(1) dvSNARG
This work linear 2| G| PCP negl(1) o(1) laconic argument
This work linear |G| PCP negl(A1) o(1) laconic argument

* Relies on a new hypothesis on the hardness of approximation of the minimal distance of linear codes

e Under the same hypothesis, implies a witness encryption scheme for NP in the generic group model




Main Ingredient: Linear PCPs (LPCPs)

[IKOO07]

Instantiations (for circuit satisfiability):
PCP where the proof (x, w) * Walsh-Hadamard encoding [ALMSS92, IKO07]
3 queries, m = 0(|C|?)
* Quadratic span programs [GGPR13]
3 queries, m = O(|C|)
e Square span programs [DFGK14]
2 queries, m = O(|C|)
* Traditional PCPs [BCIOP13]
1 query, m = poly(|C|)

oracle implements a
linear function T € ™

qg € F™

(q, ™) EF

Queries in these constructions are
statement-independent

Verifier



From Linear PCPs to Succinct Arguments
[BCIOP13]

Verifier encrypts its queries using
a linear-only encryption scheme

\— 4

Part of CRS




From Linear PCPs to Succinct Arguments
[BCIOP13]

Verifier encrypts its queries using
a linear-only encryption scheme

Encryption scheme only supports
linear homomorphism

7

n'48
Part of CRS



From Linear PCPs to Succinct Arguments

Verifier encrypts its queries using
a linear-only encryption scheme

[BCIOP13]

Prover constructs linear
PCP it from (x,w)

Prover homomorphically computes
responses to linear PCP queries

(Tl', ql) (Tl', qZ) (Tl’, qk).J

Prover’s message



From Linear PCPs to Succinct Arguments

[BCIOP13]

Statement-independent LPCP = designated-verifier SNARG Prover constructs linear
Statement-dependent LPCP = 2-message laconic argument PCP 7 from (x, w)

(Also possible to instantiate compiler with a linear-only
encoding scheme to obtain publicly-verifiable SNARGS) (X, W)

Verifier decrypts l
ciphertexts and checks T € F™
linear PCP responses

Prover homomorphically computes
responses to linear PCP queries

(Tl’, ql) (Tl', qZ) (Tl', qk)J

Prover’s message



Succinct Arguments based on ElIGamal

Assumption: EIGamal encryption (with message in exponent) is linear-only

(holds unconditionally if we model G as a generic group)
skix < Zp Encrypt(pk,m):r « Z,,ct = (g",h" g™)
pk:h =g* € G

Decryption recovers message in

the exponent, so need to solve
discrete log to recover message

Assuming LPCP
responses are “smal

k-query LPCP

G: group with prime order p and generator g

III

Designated-verifier argument
with proofs of size 2(k + 1) |G|




Succinct Arguments based on ElIGamal

Assumption: EIGamal encryption (with message in exponent) is linear-only

(holds unconditionally if we model G as a generic group)
skix < Zp Encrypt(pk,m):r « Z,,ct = (g",h" g™)
pk:h =g* € G

Decryption recovers message in
the exponent, so need to solve
discrete log to recover message

Assuming LPCP
responses are “small”

k-query LPCP

Observation: to obtain a SNARG with proof size “Extra” query needed for consistency
2| @G|, sufficient to construct a 1-query linear PCP check (unnecessary when k = 1)

Designated-verifier argument
with proofs of size 2(k + 1) |G|




Query Packing for Linear PCPs

[BCIOP13]: k-query PCP = 1-query linear PCP
This work: k-query (bounded) linear PCP = 1-query linear PCP

Suppose ||Q' || < B bounded LPCP
(q", ) = z B '(q;, )
ielk]
B

91 92 43 - 4k

Can view value as an integer in base B with

k digits (corresponding to LPCP responses)

Q E Zka I— 1ql

Le[k]

Starting point: View linear PCP queries + proof over the integers




Query Packing for Linear PCPs

[BCIOP13]: k-query PCP = 1-query linear PCP
This work: k-query (bounded) linear PCP = 1-query linear PCP

Suppose ||Q' || < B bounded LPCP

(q", ) = z B Y(q;, m)

ielk]

91 92 43 - 4k

Problem: malicious prover can
choose Tt € Z™ such that
responses are not bounded

Then, packed responses cannot be
explained by a single linear function



Query Packing for Linear PCPs

[BCIOP13]: k-query PCP = 1-query linear PCP
This work: k-query (bounded) linear PCP = 1-query linear PCP

|

qul
e k] k-query B-bounded LPCP =
1-query B°®) _hounded LPCP

Suppose ||Q' || < B bounded LPCP

(q", ) = Z ri{q;, )

ielk]

91 92 43 - 4k

Solution: take a random linear combination
of query vectors, where scalars ; chosen
from sufficiently-large interval




Query Packing for Linear PCPs

[BCIOP13]: k-query PCP = 1-query linear PCP
This work: k-query (bounded) linear PCP = 1-query linear PCP

Embed B-bounded integer linear PCPs
over a finite field IF,, where p > B

Compile linear PCP over [F, to succinct
argument using [BCIOP13]

For packed linear PCP, meaningful if
final bound satisfies B9%) < p




Hadamard LPCP Instantiation

Hadamard instantiation [ALMSs92, Ik007]:
* 2-query B-bounded linear PCP

Previously described as a 3-query
91 42 43 --- gk

construction, but 2 of the queries can
be combined

k-query (bounded) LPCP = 1-query LPCP



Hadamard LPCP Instantiation

91 92 43 - 4k

k-query (bounded) LPCP = 1-query LPCP

Hadamard instantiation [ALMSs92, Ik007]:

2-query B-bounded linear PCP
Query dimension: m = 0(|C|?)
For soundness error &, B = O(|C|? /&%)

Problematic: bound for packed LPCP
isB' = 0(|C|*/e%)

Verification time requires computing
a discrete log of this magnitude —
requires time O(|C|? /&%)




Hadamard LPCP Instantiation

Optimizing proof verification: Hadamard instantiation [ALmss92, 1k007]:
* Linear PCP verification corresponds to a * 2-query B-bounded linear PCP
quadratic test: e Query dimension: m = 0(|C|?)
az —a, =t e Forsoundnesserrore, B = 0(|C|?/&?)

LPCP responses Target value (depends
only on statement)

Problematic: bound for packed LPCP
isB' = 0(|C|*/e%)

Verification time requires computing
a discrete log of this magnitude —
requires time O(|C|?/&?)




Hadamard LPCP Instantiation

Optimizing proof verification:
* Linear PCP verification corresponds to a
guadratic test:
az —a, =t
* Packed representation: verifier computes
g® = g®1t7 % (verifier knows r)

* Observation: With overwhelming

probability, |a;| € O (\/E/e)

Strict bound (with probability 1):

lai| € O(IC|/€)

Hadamard instantiation [ALMSs92, Ik007]:

2-query B-bounded linear PCP
Query dimension: m = 0(|C|?)
For soundness error &, B = O(|C|? /&%)

Problematic: bound for packed LPCP
isB' = 0(|C|*/e%)

Verification time requires computing
a discrete log of this magnitude —
requires time O(|C|?/&?)




Hadamard LPCP Instantiation

Optimizing proof verification:
* Linear PCP verification corresponds to a
guadratic test:
az —a, =t
* Packed representation: verifier computes
g® = g®1t7 % (verifier knows r)

* Observation: With overwhelming

probability, |a;| € O (\/E/e)

Strict bound (with probability 1):

lai| € O(IC|/€)

If g¢ encodes a valid LPCP response, then
there exists a; such that
ge = gutraz = ga1+ra%g—rt

Equivalently:

2

a ai+raf

gtg " =g

Statement independent

Implication: verifier can precompute

. 2
accepting values of g#117a1

Verification consists of ElGamal decryption
(to obtain g%), multiplication by g~ '* and

a table lookup (for g@1t741)



Desighated-Verifier SNARGs based on EIGamal

Assuming ElGamal is linear-

only (or modeling G as a

1-query linear PCP generic group)
Encrypt SNARG for NP
with ElGamal

To verify NP relation of size |C|:
* Proof size: 2| G|
* CRS size + prover cost: O(|C|?)
* Soundness error: £ = 1/poly(A1)

* Verifier cost: 0 (\/m / e)

With a precomputed table of size 0 w/ |C|/€), verification

requires just 4 group operations and table lookup



Desighated-Verifier SNARGs based on EIGamal

Shortest SNARG with good concrete efficiency

(does not need to use classical PCPs)

1-query linear PCP

Encrypt
with ElIGamal

Designated-verifier
SNARG for NP

To verify NP relation of size |C|:
* Proof size: 2|G]|
* CRS size + prover cost: O(|C|?)
* Soundness error: £ = 1/poly(A1)

* Verifier cost: 0 (\/m / e)




Desighated-Verifier SNARGs based on EIGamal

Open question: Same level of succinctness but

with O(|C]) size CRS (and O(|C|) prover cost)

1-query linear PCP
Designated-verifier
SNARG for NP

Encrypt
with ElIGamal

To verify NP relation of size |C|:
* Proof size: 2| G|
* CRS size + prover cost: O(|C|?)
* Soundness error: £ = 1/poly(A1)

* Verifier cost: 0 (\/m / e)




Desighated-Verifier SNARGs based on EIGamal

1-query linear PCP

Encrypt
with ElIGamal

Designated-verifier
SNARG for NP

To verify NP relation of size |C|:
* Proof size: 2| G|
* CRS size + prover cost: O(|C|?)
* Soundness error: £ = 1/poly(A1)

o * Verifier cost:@(\/IT c

Can we get negligible soundness

without compromising correctness?



Achieving Negligible Soundness Error

Approach: If verification
relation is linear, then possible
to evaluate it in the exponent

1-query linear PCP

Encrypt query
vector with ElGamal Can we construct a 1-query
linear PCP with a linear decision
procedure?
e
w/ Prover computes: Problem: linear PCP response

m (g7, h’”g“’*'”)) computed in the exponent

“Decryption” yields g<q*'”>



Achieving Negligible Soundness Error

Can we construct a 1-query linear PCP with a linear decision procedure?

[Grol6]: linear PCP with linear decision procedure is impossible (for hard languages)
but only if... the underlying linear PCP has negligible completeness error

Main intuition: if decision procedure is linear:

* True statement: satisfying
1T exists for all valid Q
? |
_ QT IR = * False statement: by union
bound, no satisfying m for
sufficiently many Q4, ..., Q,

LPCP decision LPCP query matrix LPCP Target
matrix proof value




Linear PCPs from Hardness of Approximation

Can we construct a 1-query linear PCP with a linear decision procedure?

Implication of [Gro16]: LPCP with linear decision procedure must rely on imperfect
completeness

This work: leverage hardness of approximation results to design new LPCPs

Given A € F™™ and vector b € F™, find
a sparse solution x € F™ where Ax = b

X

Low Hamming weight

(number of nonzero entries)

Minimal weight solution problem (MWSP)



Linear PCP for GapMWSP

__ H Given A € F™ ™ and vector b € F™, find
A X a sparse solution x € F™ where Ax = b

GapMWSPg:
* YESinstance (4, b, d): there exists x with weight < d such that Ax = b
* Noinstance (4, b,d): all x where Ax = b have weight = fd

Adaptation of [HKLT19]: GapMWSP; is NP-hard for f = log® n and field F
where log|FF| = poly(n)



Linear PCP for GapMWSP

GapMWSP,;
YES instance: there exists x with
weight < d suchthat Ax = b
NO instance: all x where Ax = b have
weight > (- d

Query: noisy linear combination of rows of 4

T I T
T =

e € i has low-weight

r<—IFq B

uniformly random

(each entry is random with
probability £/d and 0 otherwise)




Linear PCP for GapMWSP

GapMWSP,;
H YES instance: there exists x with
weight < d such that =
NO instance: all x where Ax = b have
weight = f - d

Query: noisy linear combination of rows of A YES instance:
g" =rTA+ e qg'x=r"Ax+e'x=7r"b

Proof: low-weight solution x (Ax = b) Suppose density of e is ¢/d:

PrleTx=0]>(1—-¢/d)%>1—c¢

completeness error &€

Verification: accept if response a satisfies
a=1r"'b




Linear PCP for GapMWSP

GapMWSP,;
H YES instance: there exists x with
weight < d suchthat Ax = b
NO instance: all x where = b have
weight = f - d

Query: noisy linear combination of rows of A NO instance:
g" =rTA+ e qg'x=r"Ax+e'x=7r"b
Proof: low-weight solution x (Ax = b) Case1: Ax # b

rT Ax is uniform, so verifier accepts with
Verification: accept if response a satisfies probability at most 1/FF

a=1"'h



Linear PCP for GapMWSP

Query: noisy linear combination of rows of 4

q' =r"A+ e’
Proof: low-weight solution x (Ax = b)

Verification: accept if response a satisfies
a=1r"'b

GapMWSP,;

YES instance: there exists x with
weight < d suchthat Ax = b
NO instance: all x where =
weight > (- d

have

NO instance:
qg'x=r"Ax+e'x=1r"h

Case 2: Ax = b, weight(x) > Bd
Bd
e’ x = 0 with probability (1 — 2) < e B¢

negligible when ¢ = w(logn)



Linear PCP for GapMWSP

GapMWSP,;
H YES instance: there exists x with
weight < d suchthat Ax = b
NO instance: all x where = b have
weight = f - d

Query: noisy linear combination of rows of 4 1-query linear PCP for NP with
qT —rT'4A + e’ * 0(1) completeness error
* negligible soundness error
Proof: low-weight solution x (Ax = b) v Inear denEiem preseeli

ElGamal is linear-only= laconic argument

Verification: accept if response a satisfies for NP with negligible soundness where
a=1r"'b Im| = 2|G]




Witness Encryption
[GGSW13]

ct

X

Encrypt a message m to a Decrypt ciphertext ct
statement x (for NP language L) with any valid witness w

Security: if x & L, then ct provides semantic security
A “hub” for many cryptographic notions: PKE, IBE, ABE, etc. (“lightweight obfuscation”)

Existing constructions rely on indistinguishability obfuscation [GGHRSW13], multilinear
maps [GGSW13, CYW18], or new algebraic structures [BIJMSZ20]



From Soundness to Confidentiality

Query: noisy linear combination of rows of A

q' =r'A+ e’ Linear PCP is “predictable”

Proof: low-weight solution x (Ax = b)

Verifier accepts only one response
(that is known to verifier a priori)

Verification: accept if response a satisfies
a=1'h

[FNV17]: predictable arguments for L = witness encryption for L

Idea: for x & L, accepting response must be unpredictable (soundness) =
encrypt a message using a hard-core bit derived from the response



Predictable Argument from

Hardness of Approximation

Query: noisy linear combination of rows of A

q' =r'A+ e’ Linear PCP is “predictable”

Proof: low-weight solution x (Ax = b)

Verifier accepts only one response
(that is known to verifier a priori)

Verification: accept if response a satisfies
a=1'h

?
Predictable linear PCP = Predictable argument

Current compiler (encrypting with EIGamal) does not yield a predictable argument:
Proof is an encryption of the predicted linear PCP response




Predictable Argument from

Hardness of Approximation

Query: noisy linear combination of rows of A
q' =r'A+ e’ Linear PCP is “predictable”

Proof: low-weight solution x (Ax = b) Verifier accepts only one response

. . s that is known to verifier a priori
Verification: accept if response a satisfies ( f priori)

a=1"'h

Approach: instead of encrypting g7, directly encode it in the exponent

Accepting
Th

response: g"




Predictable Argument from

Hardness of Approximation

Query: noisy linear combination of rows of A

q' =r'A+ e’ Linear PCP is “predictable”
Proof: low-weight solution x (Ax = b) Verifier accepts only one response

. . s that is known to verifier a priori
Verification: accept if response a satisfies ( f priori)

a=1"'h

Problem: Does not hide g (and in

i ing g7 di
Approach: instead of encrypting q*, directl sarticular, e7)

If there is low-weight x such that

T T
WU Ax = 0, then adversary learns g€ *




Predictable Argument from

Hardness of Approximation

Need to “rule out” low-weight solutions to homogeneous system
Minimum distance problem (MDP):

Given a matrix G € F™™ find the
G minimal distance (under Hamming
metric) of the code generated by

GapMDPg:
* YESinstance (G, d): minimal distance of code generated by - is < d
* Noinstance (&, d): minimal distance of code generated by G is = fd

In terms of parity-check matrix H for G:

minimal distance of G is d & 3x: Hx = 0 where x has weight d



Predictable Argument from

Hardness of Approximation

GapMDPg:
* YESinstance (1, d): there exists x with
weight < d such that Hx = 0
* Noinstance (H,d): all x where Hx =0
have weight > f - d

Hardness of GapMDPg:
* NP-hard when 8 = 0(1) and |[F| = poly(n) [DMs99]
* SAT reduces to GapMDP in guasi-polynomial time when 8 = w(logn) and |F| =
poly(n) [CW09, AK14]

Hypothesis: SAT reduces to GapMDPj; in polynomial time when f = w(logn) and |F| = n@@®




Predictable Argument from

Hardness of Approximation

GapMDPg:
* YESinstance (1, d): there exists x with
weight < d such that Hx = 0
* Noinstance (H,d): all x where Hx =0
have weight > f - d

Accept if
. L rover’s
Query: noisy linear combination of rows of H > . s
message is g
q' =r"H + e’ + sc’

7 uniformly random
e: low-weight vector (with density £/d)
s, C: uniformly random



Predictable Argument from

Hardness of Approximation

Completeness: Hx = 0 GapMDPg:

* YESinstance (1, d): there exists x with
weight < d such that Hx = 0

q'x =rTHx + e'x + scTx = sc’x

e’ x = 0 with probability at least * Noinstance (I, d): all x where Hx =0
1-¢g/d)i=1-¢ have weight > 8 - d
Accept if
Query: noisy linear combination of rows of H PrOVET 5

message is g°
q' =r"H+ e + sc’
7 uniformly random

e: low-weight vector (with density £/d)
s, C: uniformly random



Predictable Argument from

Hardness of Approximation

Soundness: if G is modeled as a generic GapMDPﬁ:

roup, then prover’s message is always . . .
s P == Y * VYES instance (, d): there exists x with
g% “forsomea € F,z€ F .

weight < d such that Hx = 0

Case 1: Hz # 0: r" Hz is random (over e NO instance (H’ d) all x where Hx = (
choice of r)

Case 2: Hz = 0: e’z is random (over have weight = 5 - d
choice of e)

Query: noisy linear combination of rows of H

q' =r"H + e’ + sc’

Accept if
prover’s
message is g°

7 uniformly random
e: low-weight vector (with density £/d)
s, C: uniformly random



Witness Encryption from

Hardness of Approximation

Implies a predictable laconic
argument for GapMDPg in the

generic group model

Hypothesis: SAT reduces to GapMDP in polynomial time when 8 = w(logn) and |F| = n®()

Corollary: Under this hypothesis, there exists:
* a predictable laconic argument for NP in the generic group model with proof size |G|
* a witness encryption scheme for NP in the generic group model



Witness Encryption from

Hardness of Approximation

Hypothesis: SAT reduces to GapMDPj in polynomial time when f = w(logn) and [[F| = n@@®

Corollary: Under this hypothesis, there exists:
* a predictable laconic argument for NP in the generic group model with proof size |G|
* a witness encryption scheme for NP in the generic group model

Implications:
* QOur hypothesis may be proven in the future (no known barriers to doing so) = there
exists an unconditional construction of witness encryption in the generic group model
* Ruling out witness encryption in the generic group model = falsify this hypothesis
* Impossibility results known in the generic group model known for IBE [PRV12] and
indistinguishability obfuscation [MMNPs16]




Witness Encryption from

Hardness of Approximation

w(1)

Hypothesis: SAT reduces to GapMDPj in polynomial time when f = w(logn) and [F| = n

Corollary: Under this hypothesis, there exists:
* a predictable laconic argument for NP in the generic group model with proof size |G|
* a witness encryption scheme for NP in the geg

More generally: any argument where the
Implications: proof consists of a single group element and
the verification procedure is a generic

. rh hesis m roven in the futur
Our hypothesis may be prove the future ( algorithm = predictable argument

exists an unconditional construction of witne ) )
* Ruling out witness encryption in the generic group model = falsify this hypothesis
* Impossibility results known in the generic group model known for IBE [PRV12] and
indistinguishability obfuscation [MMNPs16]




Summary of Results

Group Information-Theoretic Soundness Completeness Argument
Construction  Type Proof Size Building Block Error Error Type
[Gro16] bilinear 2|G,| + |G, | linear PCP negl(A) 0 SNARG
[BCIOP13] linear 8|G] linear PCP 1/poly(A) 0 dvSNARG
[BCIOP13] linear 2| G| PCP 1/poly(1) 0 dvSNARG
This work linear 2|G] linear PCP 1/poly(1) negl(1) dvSNARG
This work linear 2| G| PCP negl(1) o(1) laconic argument
This work linear |G| PCP negl(1) o(1) laconic argument

* Relies on a new hypothesis on the hardness of approximation of the minimal distance of linear codes

e Under the same hypothesis, implies a witness encryption scheme for NP in the generic group model




Open Problems

Unconditional construction of witnhess encryption in the generic group model
* Show NP-hardness of GapMDP for our parameter regime
 Compile predictable linear PCP into predictable argument
* (VBB) obfuscate linear PCP verification (affine tester)

Concretely-efficient 2-element SNARGs with sub-quadratic prover overhead

2-element laconic arguments with perfect completeness

Thank you!



