Practical Somewhat Homomorphic Encryption

David Wu (joint work with Dan Boneh)

Homomorphic Encryption

Homomorphic encryption scheme: encryption scheme that allows computation on ciphertexts

Comprises of three functions:

Must satisfy usual notion of semantic security

Homomorphic Encryption

Homomorphic encryption scheme: encryption scheme that allows computation on ciphertexts

Comprises of three functions:

$$c_{1} = \operatorname{Enc}_{pk}(m_{1})$$

$$c_{2} = \operatorname{Enc}_{pk}(m_{2})$$

$$ek$$

$$\operatorname{Dec}_{sk}\left(\operatorname{Eval}_{f}(ek, c_{1}, c_{2})\right) = f(m_{1}, m_{2})$$

Fully Homomorphic Encryption (FHE)

Many homomorphic encryption schemes:

- ElGamal: $f(m_0, m_1) = m_0 m_1$
- Paillier: $f(m_0, m_1) = m_0 + m_1$
- Goldwasser-Micali: $f(m_0, m_1) = m_0 \oplus m_1$

Fully homomorphic encryption: homomorphic with respect to **two** operations: addition and multiplication

- Can evaluate Boolean and arithmetic circuits
- [BGN05]: one multiplication, many additions
- [Gen09]: first FHE construction from lattices

Fully Homomorphic Encryption

C(f): circuit for some function f

Correctness: $\operatorname{Dec}_{sk}\left(\operatorname{Eval}_{f}(ek, c_{1}, c_{2})\right) = f(m_{1}, m_{2})$

Circuit Privacy: $\operatorname{Enc}_{pk}(\mathcal{C}(m_1, m_2)) \approx \operatorname{Eval}_f(ek, c_1, c_2)$

Compactness: Decryption circuit has size at most $poly(\lambda)$

In Theory: Secure Computation using FHE

Represent "Search" function as a circuit and evaluate homomorphically

In Practice: Secure Computation using FHE

FHE schemes have tremendous overhead

Somewhat Homomorphic Encryption (SWHE)

FHE supports arbitrary number of operations Compromise: Support a *limited* number of operations (e.g., evaluate circuits of a certain depth)

• Somewhat/leveled homomorphic encryption

Brakerski's SWHE [Bra12]

Operates over a polynomial ring: $R = \mathbb{Z}[x]/\Phi_m(x)$

Plaintext and ciphertext are vectors of ring elements

Homomorphic multiplication much more expensive than homomorphic addition

• Can evaluate *low* degree polynomials over encrypted data

Application: Statistical Analysis

Application: Statistical Analysis

Given *n* vectors x_1, \ldots, x_n (e.g., patient profiles), define *X* to be the matrix with rows x_1, \ldots, x_n

• Mean:
$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• Covariance:
$$\Sigma_X = \frac{1}{n^2} (nX^T X - (n\mu)(n\mu)^T)$$

Division difficult to support, so represent as rationals

Depth 0 circuit for mean, depth 1 for covariance

Application: Statistical Analysis

Can also perform linear regression on encrypted data Given design matrix X and response vector y, evaluate normal equations:

$$\theta = (X^T X)^{-1} X^T y$$

Invert over ${\mathbb Q}$ using Cramer's rule

Depth n for n dimensional data

Batch Computation [SV11]

Encrypt + process array of values at no extra cost

Main intuition: Chinese Remainder Theorem

Choose p such that R_p splits into smaller rings: $R_p \cong \bigotimes_{i=1}^n R_{p_i}$

Batch Computation

Encrypt + process array of values at no extra cost:

In practice: \geq 5000 slots

Batch Computation

Can also permute slots (via Frobenius automorphisms) [BGV12, GHS12]

Statistical analysis reduces to computing inner products:

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}^{T} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = 1 \cdot 1 + 2 \cdot 0 + 3 \cdot 0 + 4 \cdot 1 = 5$$

Naïve method: Encrypt each component separately.

Requires 4 multiplications!

Batch inner product: encrypt multiple components in each ciphertext.

Requires 1 multiplication!

Result of batch multiplication:

Desired result:

5

Use automorphisms to sum up components:

Use automorphisms to sum up components:

Time to Compute Mean and Covariance over Encrypted Data (Dimension 4)

Time to Compute Mean and Covariance over Encrypted Data (4096 Data Points)

Time to Perform Linear Regression on Encrypted Data (2 Dimensions)

Time to Perform Linear Regression on Encrypted Data (260,000 Data Points)

Conclusions

SWHE allows computation of circuits of low-depth

Batching enables scaling to nontrivial datasets

Can perform statistical analysis on encrypted data with "reasonable" overhead

Open Source FHE Implementation:

https://github.com/dwu4/fhe-si