Privately Evaluating Decision Trees and Random Forests

David Wu

Joint work with Tony Feng, Michael Naehrig, and Kristin Lauter

December, 2014
Motivations

Taxes...

Here is my financial data:

[...]

You qualify for these deductions:

[...]

classification
The Power of the Cloud

Advantage of the cloud: *big data*

But can now the cloud be trusted?

• Financial Records
• Medical Records
• Legal Records
• Personal Information
Privacy-Preserving Machine Learning

Leverage the power and data available in cloud-based services

Preserve user privacy
Scope of This Talk

Consider one particular model: decision trees and their generalization, random forests

Assume that the server already has the model: focus on *private evaluation* of models
Decision Trees

- Nonlinear models for regression or classification
- Consists of a series of decision variables (tests on the feature vector)
- Evaluation corresponds to tree traversal
Random Forests

- Train many decision trees on random subsets of the features
- Output is average (majority) of outputs of individual decision trees for regression (classification)
- Reduces variance of model
Security Model

Semi-honest adversary: follow the protocol as written, but may try to learn additional information from the protocol trace (*honest-but-curious*)

Malicious adversary: can deviate arbitrarily from the protocol to satisfy its objectives
Server-Side and Client-Side Privacy

Privacy for the client: server learns no information about the client’s query

Privacy for the server: client does not learn anything about the model other than what s/he already learns from the output

Formally, we use the real-world / ideal-world paradigm
Comparison Protocol
Comparison Protocol [DGK07, BPTG14]

Recall decision tree setting:
• Server has a decision tree (the model)
• Client has feature vector
Comparison Protocol [DGK07, BPTG14]

Basic building block for decision trees: evaluating comparisons of the form

$$1\{x_{i_k} < t_k\}$$

index into feature vector (\(x_{i_k}\) is the client’s input)
threshold (server’s input)
Comparison Protocol [DGK07, BPTG14]

Desired functionality:
Server learns an *encryption* of comparison bit (under the client’s public key), client learns nothing

client input: x

server input: y
Back to the Comparison Protocol...

Take two positive integers x, y and consider their binary representations.
Comparison Protocol [DGK07, BPTG14]

\[x = x_1 x_2 x_3 x_4 \ldots x_n \]

\[y = y_1 y_2 y_3 y_4 \ldots y_n \]

Observation:
\[x > y \text{ if there is an index such that } x_i > y_i \text{ and for all } j < i, x_j = y_j \]
Comparison Protocol [DGK07, BPTG14]

client input: x

server input: y

Step 1: Client sends bitwise encryptions to server

$Enc(x_1) \cdots Enc(x_n)$
Comparison Protocol [DGK07, BPTG14]

Step 2: Server chooses $s \leftarrow \{-1, 1\}$ and homomorphically computes

$$
\text{Enc} \left(x_i - y_i + s + 3 \sum_{j<i} (x_j \oplus y_j) \right)
$$

Note: encryption scheme needs to be additively homomorphic
Comparison Protocol [DGK07, BPTG14]

Term server computes:

\[w_i := (x_i - y_i + s) + 3 \sum_{j<i} (x_j \oplus y_j) \]

If \(s = 1 \), \(x_i - y_i + s = 0 \) if and only if \(x_i < y_i \)

If \(s = -1 \), \(x_i - y_i + s = 0 \) if and only if \(x_i > y_i \)

Always non-negative, and if non-zero, then \(w_i > 0 \)
Comparison Protocol [DGK07, BPTG14]

Term server computes:

\[w_i := x_i - y_i + s + 3 \sum_{j<i} (x_j \oplus y_j) \]

Recall observation:

\(x > y \) if and only if there is \(i \) such that \(x_i > y_i \) and for all \(j < i \), \(x_j = y_j \)

if \(s = -1 \), \(x > y \) if and only if there exists \(i \) such that \(w_i = 0 \)

if \(s = 1 \), \(x < y \) if and only if there exists \(i \) such that \(w_i = 0 \)
Comparison Protocol [DGK07, BPTG14]

client input: x

server input: y

Step 3: Server sends back $\text{Enc}(w_1) \cdots \text{Enc}(w_n)$

Technical detail: Server first multiplies by a random non-zero element
Comparison Protocol [DGK07, BPTG14]

Step 4: Client decrypts the w_i and sends back $\text{Enc}(\lambda)$ where $\lambda = 1$ only if there exists i such that $w_i = 0$ and 0 otherwise.
Comparison Protocol [DGK07, BPTG14]

Step 5: Given $\text{Enc}(\lambda)$ and s, server can compute result of comparison:
\[\text{Enc}(\mathbf{1}\{x < y\}) \].

Recall:
- if $s = -1$, $x > y$ if and only if there exists i such that $w_i = 0$
- if $s = 1$, $x < y$ if and only if there exists i such that $w_i = 0$
Semi-honest Secure Protocol

Key Idea: suppose we give the client b_1, b_2, and the structure of the tree

Then, client can compute the *index* of the outcome

Problem: Leaks the structure of the tree!
Semi-honest Secure Protocol

Suppose client knew the index of the outcome

Problem reduces to well-studied problem: oblivious transfer
Oblivious Transfer (OT)

client’s input: index i

server’s input: database $\{m_1, \ldots, m_n\}$

 Desired functionality: Client learns m_i and nothing else, server learns nothing
Semi-honest Secure Protocol

Suppose client knew the index of the outcome

Problem reduces to OT: treat leaves as database, client knows index

Problem: Need to hide structure!
Hiding the Structure

1. **Padding:** Insert “dummy” nodes to obtain complete tree
Hiding the Structure

2. **Randomization:** Randomly flip decision variables:

\[\bar{b}_i := 1 - b_i \]
Hiding the Structure: Randomization

Choose

\[s = s_1 s_2 \ldots s_m \leftarrow \{0,1\}^m \]

uniformly at random

If \(s_i = 1 \) then flip

\[b_i \mapsto 1 - b_i \]
Semi-honest Secure Protocol

1. **Server:** Pad and randomize the decision tree
2. **Server & Client:** Engage in comparison protocol to compute each b_i
3. **Client:** Compute the index j of the leaf node
4. **Client & Server:** Engage in OT to obtain c_j

Theorem. This protocol is secure against *semi-honest* adversaries.
From Trees to Forests

Naïve Solution: Evaluate each tree independently using the protocol

Problem: Reveals more information about the model than just the classification
From Trees to Forests

Better Solution: Use an additive secret-sharing to hide intermediate results

Evaluate each tree as before, but each individual evaluation now looks random

- Add r_1 to each classification
- Add r_2 to each classification
- Add r_3 to each classification
From Trees to Forests

Better Solution: Use an additive secret-sharing to hide intermediate results

- Add r_1 to each classification
- Add r_2 to each classification
- Add r_3 to each classification

Reveal $\sum_i r_i$ to the client, which allows client to learn sum (mean) of predicted values
Implementation
Implementation

Implemented private decision tree + random forest protocol (semi-honest security)

Two primary components:
• Comparison protocol
• Oblivious Transfer
Implementation

Comparison protocol instantiated with exponential variant of ElGamal encryption
 • Fast instantiation using elliptic curves

Oblivious transfer based on Naor-Pinkas with OT Extensions
Decision Tree Evaluation on ECG Data

<table>
<thead>
<tr>
<th>Security Level</th>
<th>Computation (s)</th>
<th>Bandwidth (KB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Client</td>
<td>Server</td>
</tr>
<tr>
<td>[BFK⁺09]</td>
<td>80</td>
<td>1.765</td>
</tr>
<tr>
<td>[BPGT14]</td>
<td>80</td>
<td>1.485</td>
</tr>
<tr>
<td>This work</td>
<td>128</td>
<td>0.091</td>
</tr>
</tbody>
</table>

Experimental Parameters:
- Data Dimension: 6
- Depth of Decision Tree: 4
- Number of Comparisons: 6
Performance for Complete Decision Trees

- **Computation Time (s)**
- **Bandwidth (MB)**

Depth of Decision Tree

- **Client Computation**
- **Server Computation**
- **Client Upload**
- **Server Upload**
One-Sided Security (Malicious Model)

Privacy of the server’s model is ensured against a malicious client.

Privacy of the client’s input is ensured against a malicious server.

However, client not guaranteed to receive “correct” answer.
Extensions to One-Sided Security

Possible attacks on semi-honest protocol:

1. **Server**: Pad and randomize the decision tree
2. **Server & Client**: Engage in comparison protocol to compute each b_i
3. **Client**: Compute the index j of the leaf node containing the response
4. **Client & Server**: Engage in OT to obtain c_j

- Client might cheat during comparison protocol (for example, encrypt a value that is not 0/1)
 - Solution: zero-knowledge proofs
- Client might cheat by requesting a different index
 - Solution: “conditional” oblivious transfer
Conclusion

Simple protocols for decision tree evaluation in both semi-honest and malicious setting

Semi-honest decision tree / random forest evaluation protocols are fairly practical