
Express: Private Communication without
Synchronization

Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, Dan Boneh

Our Story

Our Story

Our Story

How to Communicate Privately?
Option 1:

End to end encrypted messaging apps

E.g. Signal, WhatsApp

Problem: metadata

How to Communicate Privately?
Option 1:

End to end encrypted messaging apps

E.g. Signal, WhatsApp

Problem: metadata

Option 2:

Anonymizing proxy

E.g. Tor, SecureDrop

Problem: global adversaries

How to Communicate Privately?
Option 3: Metadata-hiding communication systems

How to Communicate Privately?
Option 3: Metadata-hiding communication systems

E.g. Riposte, Pung, Vuvuzela, Talek, Alpenhorn, Stadium, Karaoke, Atom, XRD,
Verdict, Dissent, Herbivore, ….

How to Communicate Privately?
Option 3: Metadata-hiding communication systems

E.g. Riposte, Pung, Vuvuzela, Talek, Alpenhorn, Stadium, Karaoke, Atom, XRD,
Verdict, Dissent, Herbivore, ….

Drawback: Require running in rounds/synchronization

How to Communicate Privately?
Option 3: Metadata-hiding communication systems

E.g. Riposte, Pung, Vuvuzela, Talek, Alpenhorn, Stadium, Karaoke, Atom, XRD,
Verdict, Dissent, Herbivore, ….

Drawback: Require running in rounds/synchronization

Can we get any metadata-hiding system that does not require running in rounds?

Introducing Express
First metadata-hiding communication system with no requirement for users to
contact server at regular intervals

Introducing Express
First metadata-hiding communication system with no requirement for users to
contact server at regular intervals

Journalists can register mailboxes for sources to send messages/documents

Introducing Express
First metadata-hiding communication system with no requirement for users to
contact server at regular intervals

Journalists can register mailboxes for sources to send messages/documents

Asymptotic improvements:
client computation costs O(log N)
communication costs O(log N)
(both previously O(√N))

Introducing Express
First metadata-hiding communication system with no requirement for users to
contact server at regular intervals

Journalists can register mailboxes for sources to send messages/documents

Asymptotic improvements:
client computation costs O(log N)
communication costs O(log N)
(both previously O(√N))

Practical improvements:
5x improvement in server computation time
8x improvement in client computation time
>10x improvement in communication costs

Express Overview
3 server system, secure against:

- Arbitrarily many corrupt users
- Up to one corrupt server

Express Overview
3 server system, secure against:

- Arbitrarily many corrupt users
- Up to one corrupt server

Supported operations:
Register mailbox
(Private) write to mailbox
Read from mailbox

Express Overview
3 server system, secure against:

- Arbitrarily many corrupt users
- Up to one corrupt server

Supported operations:
Register mailbox
(Private) write to mailbox
Read from mailbox

Servers A/B store DB, handle requests
Auditor filters malformed/malicious requests

Express Overview
3 server system, secure against:

- Arbitrarily many corrupt users
- Up to one corrupt server

Supported operations:
Register mailbox
(Private) write to mailbox
Read from mailbox

Servers A/B store DB, handle requests
Auditor filters malformed/malicious requests

Security: can’t tell who the recipient of a
message is (unless you are the recipient)

Outline
Introduction/Overview

Hiding metadata without rounds

Handling disruptive users

Metadata-hiding “web browsing”

Evaluation

Tool: Private Writing with Distributed Point Functions
Point function: a function that is zero everywhere, except at one point

Distributed Point Functions and their Applications, Niv Gilboa, Yuval Ishai, Eurocrypt’14.

Tool: Private Writing with Distributed Point Functions
Point function: a function that is zero everywhere, except at one point

x f(x)

0 0

1 0

2 0

3 “Hi!”

4 0

Distributed Point Functions and their Applications, Niv Gilboa, Yuval Ishai, Eurocrypt’14.

Tool: Private Writing with Distributed Point Functions
Point function: a function that is zero everywhere, except at one point

x f(x)

0 0

1 0

2 0

3 “Hi!”

4 0

x f2(x)

0 “abc”

1 “xf$”

2 “^tg”

3 “‘2!)”

4 “jhV”

x f1(x)

0 “abc”

1 “xf$”

2 “^tg”

3 “!7≈”

4 “jhV”

Distributed Point Functions and their Applications, Niv Gilboa, Yuval Ishai, Eurocrypt’14.

=⊕

Tool: Private Writing with Distributed Point Functions
Point function: a function that is zero everywhere, except at one point

Distributed point function: technique for efficiently splitting a point function into two
pieces, each a (non-point) function whose XOR is the original point function

x f(x)

0 0

1 0

2 0

3 “Hi!”

4 0

x f2(x)

0 “abc”

1 “xf$”

2 “^tg”

3 “‘2!)”

4 “jhV”

x f1(x)

0 “abc”

1 “xf$”

2 “^tg”

3 “!7≈”

4 “jhV”

Distributed Point Functions and their Applications, Niv Gilboa, Yuval Ishai, Eurocrypt’14.

=⊕

Key features:

- concise
representation

- fast to generate

Tool: Private Writing with Distributed Point Functions

Addr Data

0 0

1 0

2 0

3 0

4 0

Addr Data

0 0

1 0

2 0

3 0

4 0

I want to write
“Hi!” to address 3

Distributed Point Functions and their Applications, Niv Gilboa, Yuval Ishai, Eurocrypt’14.
Private Information Storage, Rafail Ostrovsky, Victor Shoup, STOC’97

Tool: Private Writing with Distributed Point Functions

x f(x)

0 0

1 0

2 0

3 “Hi!”

4 0

Distributed Point Functions and their Applications, Niv Gilboa, Yuval Ishai, Eurocrypt’14.
Private Information Storage, Rafail Ostrovsky, Victor Shoup, STOC’97

Addr Data

0 0

1 0

2 0

3 0

4 0

Addr Data

0 0

1 0

2 0

3 0

4 0

Tool: Private Writing with Distributed Point Functions

x f2(x)

0 “abc”

1 “xf$”

2 “^tg”

3 “‘2!)”

4 “jhV”

x f1(x)

0 “abc”

1 “xf$”

2 “^tg”

3 “!7≈”

4 “jhV”

Distributed Point Functions and their Applications, Niv Gilboa, Yuval Ishai, Eurocrypt’14.
Private Information Storage, Rafail Ostrovsky, Victor Shoup, STOC’97

Addr Data

0 0

1 0

2 0

3 0

4 0

Addr Data

0 0

1 0

2 0

3 0

4 0

Tool: Private Writing with Distributed Point Functions

f1 f2

Distributed Point Functions and their Applications, Niv Gilboa, Yuval Ishai, Eurocrypt’14.
Private Information Storage, Rafail Ostrovsky, Victor Shoup, STOC’97

Addr Data

0 0

1 0

2 0

3 0

4 0

Addr Data

0 0

1 0

2 0

3 0

4 0

Tool: Private Writing with Distributed Point Functions

f1 f2

Distributed Point Functions and their Applications, Niv Gilboa, Yuval Ishai, Eurocrypt’14.
Private Information Storage, Rafail Ostrovsky, Victor Shoup, STOC’97

Addr Data

0 f2(0)

1 f2(1)

2 f2(2)

3 f2(3)

4 f2(4)

Addr Data

0 f1(0)

1 f1(1)

2 f1(2)

3 f1(3)

4 f1(4)

Tool: Private Writing with Distributed Point Functions

Addr Data

0 “abc”

1 “xf$”

2 “^tg”

3 “‘2!)”

4 “jhV”

Addr Data

0 “abc”

1 “xf$”

2 “^tg”

3 “!7≈”

4 “jhV”

f1 f2

Distributed Point Functions and their Applications, Niv Gilboa, Yuval Ishai, Eurocrypt’14.
Private Information Storage, Rafail Ostrovsky, Victor Shoup, STOC’97

Tool: Private Writing with Distributed Point Functions

Addr Data

0 “abc”

1 “xf$”

2 “^tg”

3 “‘2!)”

4 “jhV”

Addr Data

0 “abc”

1 “xf$”

2 “^tg”

3 “!7≈”

4 “jhV”

f1 f2

⊕

“Hi!”

Distributed Point Functions and their Applications, Niv Gilboa, Yuval Ishai, Eurocrypt’14.
Private Information Storage, Rafail Ostrovsky, Victor Shoup, STOC’97

Hiding Data
How to prevent curious clients from reading others’ mailboxes?

Addr Data

0 “abc”

1 “xf$”

2 “^tg”

3 “!7≈”

4 “jhV”

Addr Data

0 “abc”

1 “xf$”

2 “^tg”

3 “‘2!)”

4 “jhV”

Hiding Data
How to prevent curious clients from reading others’ mailboxes?

Encrypt each row with a different key held by the owner of the mailbox

Addr Data Key

0 “abc” kNYT

1 “xf$” kWaPo

2 “^tg” kWSJ

3 “‘2!)” kBuzzfeed

4 “jhV” kInquirer

Addr Data Key

0 “abc” kNYT

1 “xf$” kWaPo

2 “^tg” kWSJ

3 “!7≈” kBuzzfeed

4 “jhV” kInquirer

Hiding Data
How to prevent curious clients from reading others’ mailboxes?

Encrypt each row with a different key held by the owner of the mailbox

Different key sent to each server

Addr Data Key

0 “abc” kNYT2

1 “xf$” kWaPo2

2 “^tg” kWSJ2

3 “‘2!)” kBuzzfeed2

4 “jhV” kInquirer2

Addr Data Key

0 “abc” kNYT1

1 “xf$” kWaPo1

2 “^tg” kWSJ1

3 “!7≈” kBuzzfeed1

4 “jhV” kInquirer1

Hiding Metadata
Construction thus far vulnerable to polling attack:

Attacker reads every row after each write to see which one was changed

Hiding Metadata
Construction thus far vulnerable to polling attack:

Attacker reads every row after each write to see which one was changed

Solution: servers non-interactively re-randomize every row after each write

Additional cost is low since they already write to each row

Hiding Metadata

Addr. Key Data

0 kA0 abc + f(kA0, c)

1 kA1 xf$ + f(kA1, c)

2 kA2 !7≈ + f(kA2, c)

3 kA3 ^tg + f(kA3, c)

Data Server A

128 bitslogN bits Data size

Hiding Metadata

Addr. Key Data

0 kA0 abc + f(kA0, c)

1 kA1 xf$ + f(kA1, c)

2 kA2 !7≈ + f(kA2, c)

3 kA3 ^tg + f(kA3, c)

Data Server A

128 bitslogN bits Data size

Data

(abc + f(kA0, c)) - f(kA0, c) +f(kA0, c+1)

(xf$ + f(kA1, c)) - f(kA1, c) + f(kA1, c+1)

(!7≈ + f(kA2, c)) - f(kA2, c) + f(kA2, c+1)

(^tg + f(kA3, c)) - f(kA3, c) + f(kA3, c+1)

Hiding Metadata

Addr. Key Data

0 kA0 abc + f(kA0, c)

1 kA1 xf$ + f(kA1, c)

2 kA2 !7≈ + f(kA2, c)

3 kA3 ^tg + f(kA3, c)

Data Server A

128 bitslogN bits Data size

Data

(abc + f(kA0, c)) - f(kA0, c) +f(kA0, c+1)

(xf$ + f(kA1, c)) - f(kA1, c) + f(kA1, c+1)

(!7≈ + f(kA2, c)) - f(kA2, c) + f(kA2, c+1)

(^tg + f(kA3, c)) - f(kA3, c) + f(kA3, c+1)

Cost to re-randomize a row: (msg length/16) AES blocks

Cost to compute DPF for a row: (256 + msg length/16) AES blocks

Plausible Deniability
How to protect privacy of whistleblowers if all users are whistleblowers?

Conscript your friends into larger anonymity sets with JavaScript, Henry Corrigan-Gibbs, Bryan Ford, WPES’13

Plausible Deniability
How to protect privacy of whistleblowers if all users are whistleblowers?

Idea: Cooperative web sites embed JS that sends dummy write requests

Conscript your friends into larger anonymity sets with JavaScript, Henry Corrigan-Gibbs, Bryan Ford, WPES’13

Plausible Deniability
How to protect privacy of whistleblowers if all users are whistleblowers?

Idea: Cooperative web sites embed JS that sends dummy write requests

- Incentives properly aligned for news organizations

- Metadata-hiding means we only need 1 recipient mailbox for dummy writes

- Client-side costs low enough to not affect browsing experience

Conscript your friends into larger anonymity sets with JavaScript, Henry Corrigan-Gibbs, Bryan Ford, WPES’13

Handling Disruptive Users
Any number of users can act maliciously in arbitrary ways

Handling Disruptive Users
Any number of users can act maliciously in arbitrary ways

Two kinds of attacks:

1. Disruptive user writes to others’ mailbox
2. Disruptive user sends malformed DPF to write to many mailboxes

Handling Disruptive Users
Any number of users can act maliciously in arbitrary ways

Two kinds of attacks:

1. Disruptive user writes to others’ mailbox
2. Disruptive user sends malformed DPF to write to many mailboxes

Mechanism for preventing disruption can’t compromise privacy

Handling Disruptive Users
Problem: disruptive user writes to others’

 mailboxes

I want to write
“hjvkjfykjdvvbk”
to Reporter 1

I want to write
“oijfncuglekfjojfd”
to Reporter 2

I want to write
“sw08pf9hjpofjo”
to Reporter N

...

Virtual Addresses
Problem: disruptive user writes to others’

 mailboxes

Solution: hide mailboxes in exponentially
 large address space

Addr Data

0 “abc”

1 “xf$”

2 “^tg”

... ...

... ...

... ...

2128-2 “!7≈”

2128-1 “jhV”

Virtual Addresses
Problem: disruptive user writes to others’

 mailboxes

Solution: hide mailboxes in exponentially
 large address space

New problem: too many addresses, bad
 performance

Addr Data

0 “abc”

1 “xf$”

2 “^tg”

... ...

... ...

... ...

2128-2 “!7≈”

2128-1 “jhV”

Virtual Addresses
Problem: disruptive user writes to others’

 mailboxes

Solution: hide mailboxes in exponentially
 large address space

New problem: too many addresses, bad
 performance

Solution: virtual addresses

Addr Data

0 “abc”

1 “xf$”

2 “^tg”

... ...

... ...

... ...

2128-2 “!7≈”

2128-1 “jhV”

Addr Data

0 “abc”

1 “xf$”

2 “^tg”

... “!7≈”

N “jhV”

Virtual DB

Physical DB

Auditing
Problem: disruptive user sends malformed DPF to write to many mailboxes

x f(x)

0 0

1 0

...

2128-2 “Hi!”

2128-1 0

Auditing
Problem: disruptive user sends malformed DPF to write to many mailboxes

x f(x)

0 0

1 0

...

2128-2 “Hi!”

2128-1 0

x f2(x)

0 “abc”

1 “xf$”

...

2128-2 “‘2!)”

2128-1 “jhV”

x f1(x)

0 “abc”

1 “xf$”

...

2128-2 “!7≈”

2128-1 “jhV”

Auditing
Problem: disruptive user sends malformed DPF to write to many mailboxes

x f(x)

0 989f4

1 dDf73

...

2128-2 08dji3

2128-1 89hfif

Auditing
Problem: disruptive user sends malformed DPF to write to many mailboxes

Solution: third server audits all incoming write requests

Riposte: An Anonymous Messaging System Handling Millions of Users, Henry Corrigan-Gibbs, Dan Boneh, David Mazieres, Oakland’15.

Auditing
Problem: disruptive user sends malformed DPF to write to many mailboxes

Solution: third server audits all incoming write requests

New auditing protocol:
- O(log N) communication
- O(log N) client/auditor computation
- Prior work: all O(√N)

Auditing
Our problem: proving DPF write only modifies one entry in DB

x f2(x)

0 “abc”

1 “xf$”

2 “^tg”

3 “‘2!)”

4 “jhV”

x f1(x)

0 “abc”

1 “xf$”

2 “^tg”

3 “!7≈”

4 “jhV”

Auditing
Our problem: proving DPF write only modifies one entry in DB

More general problem: proving two vectors differ at one point

Auditing
Our problem: proving DPF write only modifies one entry in DB

More general problem: proving two vectors differ at one point

=⊕

Auditing
Idea: Recursively prove that one half is zero

0

Auditing
Idea: Recursively prove that one half is zero

0

+ =

Auditing
Idea: Recursively prove that one half is zero

0

+ =

0

Auditing
Idea: Recursively prove that one half is zero

0

+ =

0

+ =

Auditing
Idea: Recursively prove that one half is zero

0

+ =

0

+ =

0

Auditing
Idea: Recursively prove that one half is zero

0

+ =

0

+ =

0

Claim: If there is more than one
nonzero entry, the proof will fail on at
least one level of recursion

Auditing

Claim: If there is more than one nonzero entry, the proof will fail on at least one
level of recursion

Proof:
1.
2.
3.

Auditing

Claim: If there is more than one nonzero entry, the proof will fail on at least one
level of recursion

Proof:
1. Consider the first recursive step where there is only one nonzero entry
2.
3.

Auditing

Claim: If there is more than one nonzero entry, the proof will fail on at least one
level of recursion

Proof:
1. Consider the first recursive step where there is only one nonzero entry
2. The preceding step must have had two nonzero entries on opposite sides
3.

=+

Auditing

Claim: If there is more than one nonzero entry, the proof will fail on at least one
level of recursion

Proof:
1. Consider the first recursive step where there is only one nonzero entry
2. The preceding step must have had two nonzero entries on opposite sides
3. Proof must then fail because neither half is zero

=+

≠0 ≠0

Auditing
How to prove a vector is all zeros?

Auditing
How to prove a vector is all zeros?

Interpret each DPF output as an element in a prime-order field

Multiply each element by a random value and sum

Auditing
How to prove a vector is all zeros?

Interpret each DPF output as an element in a prime-order field

Multiply each element by a random value and sum

Servers do this separately on their shares of the vector and send to auditor

Auditing
How to prove a vector is all zeros?

Interpret each DPF output as an element in a prime-order field

Multiply each element by a random value and sum

Servers do this separately on their shares of the vector and send to auditor

Server doesn’t know which half is zero, sends sum for each half (in random order)

Auditing
How to prove a vector is all zeros?

Interpret each DPF output as an element in a prime-order field

Multiply each element by a random value and sum

Servers do this separately on their shares of the vector and send to auditor

Server doesn’t know which half is zero, sends sum for each half (in random order)

Auditor accepts if one pair of sums are equal

Auditing with Malicious Servers
A malicious data server can violate privacy in the protocol so far, e.g.:

Corrupt content of one half; If auditor still accepts, that half was non-zero

Auditing with Malicious Servers
A malicious data server can violate privacy in the protocol so far, e.g.:

Corrupt content of one half; If auditor still accepts, that half was non-zero

Mitigation: client helps police data servers

Auditing with Malicious Servers
A malicious data server can violate privacy in the protocol so far, e.g.:

Corrupt content of one half; If auditor still accepts, that half was non-zero

Mitigation: client helps police data servers

Client gets random seed from data servers

Client tells auditor which pair should sum to zero

Client tells auditor what the non-zero sum should be

Another Application: Web Browsing
Goal: browse the web without ISP or surveillance learning what sites you access

Another Application: Web Browsing
Goal: browse the web without ISP or surveillance learning what sites you access

Non-goals:

Hide your identity from the sites you visit
(not an anonymity system)

Backwards compatibility
(sites run custom protocol to deliver pages)

Another Application: Web Browsing
Goal: browse the web without ISP or surveillance learning what sites you access

Non-goals:

Hide your identity from the sites you visit
(not an anonymity system)

Backwards compatibility
(sites run custom protocol to deliver pages)

Idea: Use 2 instance of Express in parallel to upload requests and download pages

Web Browsing with Express
Express instance 1: Uploads

Web sites have public addresses to
receive page requests

Express instance 2: Downloads

Web Browsing with Express
Express instance 1: Uploads

Web sites have public addresses to
receive page requests

Express instance 2: Downloads

Clients register short-lived addresses to
receive pages, include their short-lived
address in page request to instance 1

Web Browsing with Express
Express instance 1: Uploads

Web sites have public addresses to
receive page requests

Express instance 2: Downloads

Clients register short-lived addresses to
receive pages, include their short-lived
address in page request to instance 1

Web servers need to contact Express at regular intervals, but clients do not

Evaluation

Evaluation
Auditing Microbenchmarks

Under 10 microseconds for 1m mailboxes (compare to 159, 98 microseconds)

Enables 8x improvement in client computation time

Riposte: An Anonymous Messaging System Handling Millions of Users, Henry Corrigan-Gibbs, Dan Boneh, David Mazieres, Oakland’15.

Evaluation
Client Costs

Asymptotically O(log N) in number of mailboxes

In practice, almost independent

Less than 1ms increase from 100 to 1m

JS code size: 71KB

Less than 2% of major news sites’ sizes
(Sending 1KB messages)

Evaluation
Communication Costs

For 214 mailboxes: 10x improvement
For 220 mailboxes: 100x improvement (client/server), 50x improvement (auditor)

Riposte: An Anonymous Messaging System Handling Millions of Users, Henry Corrigan-Gibbs, Dan Boneh, David Mazieres, Oakland’15.
Unobservable Communication over Fully Untrusted Infrastructure, Sebastian Angel, Srinath Setty, OSDI’16.

(Sending 160B messages)

Evaluation
Comparison to Riposte

Riposte supports anonymous broadcast,
Express supports broadcast and private
messages

1.3-5.8x throughput improvement

Performance becomes similar as both
systems become compute-bound on
server side

(Sending 1KB messages)

Riposte: An Anonymous Messaging System Handling Millions of Users, Henry Corrigan-Gibbs, Dan Boneh, David Mazieres, Oakland’15.

Express
First metadata-hiding communication system with no synchronization requirement

Asymptotic speedup from O(√N) to O(log N)

Practical speedup up to 5x on server, 8x on client

10x or more reduction in communication costs

Applications to private whistleblowing and metadata-hiding web browsing

Contact: saba@cs.stanford.edu

mailto:saba@cs.stanford.edu

