ObliDB: Oblivious Query Processing
using Hardware Enclaves

Saba Eskandarian Matei Zaharia

Private Data in the Cloud

Compromised cloud can:

o Read data
= Read queries
Alter data

Private Data in the Cloud

NSA spying fiasco sending customers overseas

NSA spy program cold lead to loss of business for some hosting vendors, experts say

o I\'vUu vuauaLwu

Read queries
Alter data

Private Data in the Cloud

Uber will pay $20,000 fine in settlement over 'God
View' tracking

1 \\sCUL\U \.1UUI IN D
Q\!\/—) Alter data
_ f

Private Data in the Cloud

EEEEEEEEE

V Lyft Investigates Allegation That
Employees Abused Customer Data

i

Private Data in the Cloud

ULA.‘ ‘..:II e % W F éqn nnn L._A :“ AAuIAMA_L AAAAA lnAd
EXCLUSIVE

\I s Y s ® a A 11 . ® rmil a
Ch BUSINESS CULTURE GADGETS FUTURE STARTUPS f ¥) (0 (O

Cyber-Safe

Every single Yahoo account was hacked - 3
pillion in all

- &

Private Data in the Cloud

llcn ° ‘: I. l

LAI‘I..:.I e Suu F ¢qn nnn cn‘ :n AA“IAMA“L 4% U F % L= ln‘

EEEEEEEEE

\I s Y s ® P A 11 a® rmY 4 7
teCh BUSINESS CULTURE GADGETS FUTURE STARTUPS f) (vw) (@) (O

Chianvy ecinnla VahnAnn a~r~nlint wwime hanrlznA - 12

Atos, IT provider for Winter Olympics,
hacked months hefore Opening
Ceremony cyberattack

(Purely) Cryptographic Solutions

Huge body of work on how to protect databases with cryptography

Various tradeoffs between functionality, performance, and security,
but relatively little industry adoption thus far.

Fuller et al., SoK: Cryptographically Protected Database Search, 2017.

(Purely) Cryptographic Solutions

Huge body of work on how to protect databases with cryptography

Various tradeoffs between functionality, performance, and security,
but relatively little industry adoption thus far.

Minimum Requirements:
e Broad support for common workloads
e Acceptable performance

e Strong security guarantees

Fuller et al., SoK: Cryptographically Protected Database Search, 2017.

Outline

e Intro: Protecting Cloud Data

e Hardware Enclaves and Obliviousness

e ODbIIDB Design
o Threat Model and Security Guarantees
o SELECT Algorithms
o Oblivious Indexes

e ObIiDB Performance Evaluation

Hardware Enclaves

A trusted component in an untrusted system

e Uses protected memory to isolate enclave execution from compromised OS
e Proves that it is an authentic enclave running the desired code with attestation

e Enclaves in our implementation use Intel SGX

Untrusted System

Secure
Channel

Enclave
bn a
Attestation/Communication -Data («) Adversary who controls OS

Client V| -secrets | | still can’t see inside enclave

IEE) ELECTRONIC FRONTIER FOUNDATION About Issues OurWork Take Action

Azure Confidential Computing Heralds the
Next Generation of Encryption in the Cloud

BY ERICA PORTNOY | SEPTEMBER 18, 2017

For years, EFF has commended companies who make cloud applications that encrypt data
in transit. But soon, the new gold standard for cloud application encryption will be the
cloud provider never having access to the user’s data—not even while performing

computations on it.

Microsoft has become the first major cloud provider to offer developers the ability to build

their applications on top of Intel’s Software Guard Extensions (SGX) technology, making
Azure “the first SGX-capable servers in the public cloud.” Azure customers in Microsoft’s
Early Access program can now begin to develop applications with the “confidential

computing” technology.

Google Cloud Platform Blog

Product updates, customer stories, and tips and tricks on Google Cloud Platform

Introducing Asylo: an open-source framework for confidential

computing
Thursday, May 3, 2018

“We are exploring future backends based on AMD Secure Encryption
Virtualization (SEV) technology, Intel® Software Guard Extensions (Intel® SGX)”

W

i Fortanix: Kalepso

Data protection, trust-free

Enclaves in the Cloud

Enclave space is limited, but data is big!

o
Enclave
-) —

Enclaves in the Cloud

"
Enclave
-) :

Enclaves in the Cloud

Malicious attacker can observe access
patterns to encrypted data!

Enclave

Enclaves in the Cloud

Access Pattern disclosure on Searchable Encryption:
Ramification, Attack and Mitigation

Mohammad Saiful Islam, Mehmet Kuzu, Murat Kantarcioglu
Jonsson School of Engineering
and Computer Science
The University of Texas at Dallas
{saiful, mehmet.kuzu, muratk } @utdallas.edu

Abstract

The advent of cloud computing has ushered in an era of
mass data storage in remote servers. Remote data storage
offers reduced data management overhead for data owners
in a cost effective manner. Sensitive documents, however,
need to be stored in encrypted format due to security con-

encrypted in the cloud. But. the advantage of cloud data
storage is lost if the user can not selectively retrieve seg-
ments of their data. Therefore. we need secure and effi-
cient search schemes to selectively retrieve sensitive data
from the cloud. The need for such protocols are also rec-
cgnized by researchers from major IT companies such as
Microsoft [14].

N

l/

r can observe access
ted data!l

Enclaves in the Cloud

Access Pattern disclosure on Searchable Encryption:

r can observe access

Ramification, Attack and ™ """

Mohammad Saiful Islam, Mehmet Kuzt
Jonsson School of Engin

and Computer Scien

The University of Texas a

{saiful, mehmet.kuzu, muratk }

Abstract

The advent of cloud computing has ushered in an era of
mass data storage in remote servers. Remote data storage
offers reduced data management overhead for data owners
in a cost effective manner. Sensitive documents, however,
need to be stored in encrypted format due to security con-

encrypte
storage

ments o
cient sei
from the
cgnized
Microso

— Y

~]

V

Yfed datal

Observing and Preventing Leakage in MapReduce’

Olga Ohrimenko
Microsoft Research
oohrim@microsoft.com

Christos Gkantsidis
Microsoft Research

ABSTRACT

The use of public cloud infrastructure for storing and pro-
cessing large datasets raises new security concerns. Cur-
rent solutions propose encrypting all data, and accessing it
in plaintext only within secure hardware. Nonetheless, the
distributed processing of large amounts of data still involves
intensive encrypted communications between different pro-
cessing and network storage units, and those communica-
tions patterns may leak sensitive information.

We consider secure implementation of MapReduce jobs

Manuel Costa
Microsoft Research
manuelc@microsoft.com

Markulf Kohlweiss
Microsoft Research
christos.gkantsidis@microsoft.com markulf@microsoft.com

Cédric Fournet
Microsoft Research
fournet@microsoft.com

5 f
Divya Sharma
Carnegie Mellon University
divyasharma@cmu.edu

data, in particular when they involve complex, dynamic in-
termediate data. Conversely, limited trust &
the cloud infrastructure may lead to efficient solutions, but
their actual security guarantees are less clear.

As a concrete example, VC3 [26] recently showed that,
by relying on the new Intel SGX infrastructure [19] to pro-
tect local mapper and reducer processing, one can adapt
the popular Hadoop framework [2] and achieve strong in-
tegrity and confidentiality for large MapReduce tasks with
a small performance overhead. All data is systematically
AES-GCM-encrypted, except when processed within hard-

sumptions on

Enclaves in the Cloud

Access Pattern disclosure on Searchable Encryption:
Ramification, Attack and ™ """

Mohammad Saiful Islam, Mehmet Kuzt
Jonsson School of Engin
and Computer Scien

Breaking Web Applications Built On Top of Encrypted Data

Paul Grubbs
Cornell University
pag225@cornell.edu

Thomas Ristenpart
. Cornell Tech
ristenpart@cornell.edu

ABSTRACT

We develop a systematic approach for analyzing client-server
applications that aim to hide sensitive user data from un-
trusted servers. We then apply it to Mylar, a framework
that uses multi-key searchable encryption (MKSE) to build
Web applications on top of encrypted data.

We demonstrate that (1) the Popa-Zeldovich model for
MKSE does not imply security against either passive or ac-
tive attacks: (2) Mylar-based Web applications reveal users’

Richard McPherson

. UT Austin
richard@cs.utexas.edu

Muhammad Naveed
uUSC
mnaveed@usc.edu

Vitaly Shmatikov
Cornell Tech
shmat@cs.cornell.edu

activity on the server but not interfering with its opera-
tions), and active attacks involving arbitrary malicious be-
havior. We then work backwards from these adversarial
capabilities to models. This approach uncovers significant
challenges and security-critical decisions faced by the de-
signers of BoPETs: how to partition functionality between
the clients and the server, which data to encrypt, which ac-
cess patterns can leak sensitive information, and more.

We then apply our methodology to a recent BoPET called
NE. . T401 ML Vuilfh hh fcdbnanlan s —aeaalan WAL cacain

Manuel Costa
Microsoft Besearch

man

M
Mi
m marH

ring and|
neerns.

d access
nethelesy
1 still imy
differen
: commu

yReduce

r can observe access
yYed datal

Observing and Preventing Leakage in MapReduce’

Cédric Fournet
Microsoft Research
icrosoft com

“A persistent passive attacker can
extract even more information by
observing an application’s access
patterns ... In our case study
applications, this reveals users’
medical conditions, genomes, and
contents of shopping carts”

I —

Goal: Obliviousness

Leakage attacks observe access patterns to protected memory
Problem: Leakage of access patterns completely compromises security
Solution: design enclave operation to be oblivious of input data

Access 1, 2 Access 4, 5 Access 1, 2 Access 4, 5

- —

Decouple memory

accesses from
sensitive data

Introducing ObliDB

Functionality:
Oblivious query processing algorithms for both transactional and analytic queries

Supports most SQL operations (SELECT, GROUP BY, JOIN, various aggregates)

Security:
Protects against powerful attacker with full control of the OS

Performance:
Point queries 7-22x faster than (non-enclave) prior work (Sophos, HIRB)

Analytic queries 20-330x faster than naive, 1-19x faster than prior work (Opaque)

Threat Model

ObliDB protects against an attacker with full control of the OS who can:

Read and tamper with all of untrusted memory
Pause and resume enclave execution
Observe access patterns to untrusted memory
Monitor network communications

Know auxiliary information about data stored

Threat Model

ObliDB protects against an attacker with full control of the OS who can:

e Read and tamper with all of untrusted memory
e Pause and resume enclave execution

e (bserve access patterns to untrusted memory
e Monitor network communications

e Know auxiliary information about data stored

N

e Assumption: limited oblivious memory pool (same as Opaque) ~ %

Security Guarantees

ObliDB protects data and query parameters:
e Detects any malicious attempt to tamper with data

e Leaks only query selectivity, table sizes (including intermediate tables), and

query plan

e Optional padding mode available to hide table sizes and query selectivity

ObliDB Overview

Oblivious database engine with support for
both transactional and analytic queries

Tables stored encrypted in untrusted
memory but access patterns hidden

Two storage methods: linear tables and
oblivious indexes

Enclave used to store keys/metadata and
as working space for sensitive operations

Hardware Enclave

Oblivious Encryption
[Meladala N\ Operators }E Keys’

&

[

Untrusted OS

)

£

Untrusted Storage

\
\

;
Table 1 &

(Indexed)

o

v

Table 2 8
(Linear)

2

\

Table 3 B

s}

(Linear+Indexed)

K =

SELECT Algorithms

Storage Methods: Linear

Access every block every time!
Good when accessing most blocks anyway

Used when we only need oblivious analytics

Access 1, 2 Access 4, 5

)

Decouple memory
accesses from
sensitive data

Access 1, 2

Point Read: O(N)
Large Read: O(N)
Insertion: O(1)
Deletion: O(N)

Access 4, 5

Storage Methods: Linear

Access every block every time!
Good when accessing most blocks anyway

Used when we only need oblivious analytics

Access 1, 2 Access 4, 5

)

Decouple memory
accesses from
sensitive data

Access 1, 2

Point Read: O(N)
Large Read: O(N)
Insertion: O(1)
Deletion: O(N)

Access 4, 5

Oblivious SELECT

First pass over data: determine size of output table, pick strategy to satisfy query

Input Table - 4 Strateqgies
Output Table
Continuous
Enclave Large
4 e | Allocate Small
selected” Hash

Oblivious SELECT

First pass over data: determine size of output table, pick strategy to satisfy query

Input Table - 4 Strategies
Output Table
Small
Enclave Continuous
“5 rOWS | Allocate Large
selected” Hash
A4

Q: Why not just select at the same time as the first pass?
A: Naive SELECT is not oblivious!

Oblivious SELECT

Naive SELECT is not oblivious!

Input Table

*

4=

Enclave

“Can only

fit 2 rows”

Output Table

Oblivious SELECT

Naive SELECT is not oblivious!

Input Table

*

Enclave

“Can only

fit 2 rows”

Output Table

Oblivious SELECT

Naive SELECT is not oblivious!

Input Table

*

Enclave

“Can only

fit 2 rows”

Output Table

*

Oblivious SELECT

Naive SELECT is not oblivious!

Input Table

*

Enclave

“Can only

fit 2 rows”

Output Table

*

Oblivious SELECT

Naive SELECT is not oblivious!

Input Table
* Output Table
Enclave *
* 4=

“Can only

" fit 2 rows”

Oblivious SELECT

Naive SELECT is not oblivious!

Input Table
* Output Table
Enclave *
* _ *

“Can only

" fit 2 rows”

Oblivious SELECT

Naive SELECT is not oblivious!

Input Table
* Output Table
Enclave *
“Can only :
* fit 2 rows” -

Oblivious SELECT

Naive SELECT is not oblivious!

Input Table
* Output Table
Enclave *
“Can only :
* fit 2 rows” ”
4=

Watching when we write to the output table reveals
exactly which rows of the input table we select!

Oblivious SELECT

“‘Small” SELECT algorithm

Input Table

—1

Enclave

“Can only

fit 2 rows”

Output Table

*

*

Oblivious SELECT
“‘Small” SELECT algorithm

Input Table

*

Enclave

“Can only

fit 2 rows”

Output Table

*

*
*
*

Oblivious SELECT
“‘Small” SELECT algorithm

Input Table

*

Enclave

“Can only

fit 2 rows”

Output Table

*

* k| *| *

Oblivious SELECT

“Continuous” SELECT algorithm

Dummy

Input Table write

Output Table

Enclave
Real
i " write
*
*

* * *| * *

Oblivious SELECT

“Continuous” SELECT algorithm

Input Table

* * *| * *

Enclave

Output Table

*

k[k| ¥ | *

Dummy
write

Real
write

Oblivious SELECT

“Large” SELECT Algorithm

Input Table Output Table
* Enclave * =xira
. Copy > : Extra

Oblivious SELECT

“Large” SELECT Algorithm

Input Table Output Table

* * Delete
x o

/Dummy write

Enclave

* * *| * *

*

Copy

[® D[*| *| *| x| *

Oblivious Indexes

Tool: ORAM

Crypto primitive to generically hide access patterns to data
Security guarantee: two memory traces of the same length are indistinguishable

Important: does not automatically give obliviousness

Key question: how can we use ORAM to make indexes oblivious?

Goldreich and Ostrovsky, Software Protection and Simulation on Oblivious RAMs, 1993.
Shi et al, PATH ORAM: An Extremely Simple Oblivious RAM Protocol, 2012.

Oblivious Indexes: Considerations

e Naive composition of ORAM + Index NOT oblivious
e Generic solution: pad everything to maximum number of possible accesses

e How to do this without destroying performance?

o Choice of index data structure (T tree, B tree, B+ tree, other?)
o Make the worst case less bad (optimize for enclave/ORAM setting)

o Small average-case improvements can be big worst-case improvements

Oblivious Indexes

Naive composition of ORAM and B+ Tree is not oblivious!

All data in leaves — ORAM ensures oblivious access

A
v

Insert/Delete — number of operations depends on data x

First solution: pad all inserts/deletes to worst-case number of ORAM accesses,

but this is too slow.

Oblivious Indexes

Point Read: O(log?N)

Large Read: O(N)

1. Cache nodes accessed during insertion/deletion Insertion: O(log®N)
inside enclave until certain they will not be Deletion: O(log?N)

Optimizations:

accessed again

2. Remove parent pointers

3. Pad operation to worst-case number of operations,

knowing we have made optimizations (1) and (2)

Oblivious Indexes

Point Read: O(log?N)

Optimizations:
Large Read: O(N

1. Cache nodes accessed during insertion/deletion Insertion: O(log®N)
inside enclave until certain they will not be Deletion: O(log?N)
accessed again

2. Remove parent pointers \

Why not O(NlogN)?
3. Pad operation to worst-case number of operations,
Can do linear scan over ORAM
knowing we have made optimizations (1) and (2) data structure without using
ORAM algorithm

Enables analytics on frequently
updated table!

Performance

Design Validation

Choice of Storage Method Effectiveness of Optimizer

Design Validation

Choice of Storage Method

Effectiveness of Optimizer

Workload Type Best Storage
Method

90% Insert, 5% Point/Large read Combined

90% Small read, 9% Insert, 1% Delete Index

50% Large read, 50% Point read Combined

45% Point/Large read, 5% Insert/Delete | Combined

90% Large read, 5% Insert/Delete Linear

Queries over 100k row table

Query Selectivity Alg. Choice
5% of table, continuous Small
5% of table, non-continuous | Small
95% of table, continuous Continuous
95% of table, non-continuous | Large

AN

Comparison to Baseline

Performance vs baseline based on naive use of index/operators with ORAM

Query Type Speedup
Range Selection (Linear) 29.2x

Group By Aggregate (Linear) | 185x

Range Selection (Index) 1.4x
Point Selection (Index) 1.5x
Insert (Index) 64x
Delete (Index) 15x

Queries over Consumer Financial Protection Bureau dataset: ~107k rows

Comparison to HIRB + vVORAM

Comparison to HIRB Tree

- HIRB

7.6x faster for point query on 1M row table 5| ObliDB

| [=MySQL
HIRB Tree does not support range queries i
Difference: enclave security guarantees = e

Ll sl el I R
10? 10? 10 10° 10

Size of Table (Rows)

Roche et al, A Practical Oblivious Map Data Structure with
Secure Deletion and History Independence, 2016.

Comparison to Opaque

Linear storage method:

Comparison to Opaque

comparable | " Nolndex

10' |
> L e
2
2 | I
— 10°
]
i

10- | [(. .

Qi ‘ @ ‘ ®

i Opaque Oblivious Mode
i ObliDB (without Index)
---Spark SQL (No Security)

Queries from Big Data Benchmark

Zheng et al, Opaque: An Oblivious and Encrypted Distributed Analytics Platform, 2017.

Comparison to Opaque

Linear storage method:

comparable

Combined storage method:

comparable - 19x speedup

Analytics within 2.6x of
Spark SQL

Time [seconds]

10! |

101

Comparison to Opaque Comparison to Opaque
No Index ‘ Index Al]owegl
10 |
____________ 2 10° F i B
=
—fe--- e - -k TP
‘ | ‘ | =]
Ql Q2 Q3 Ql Q2 Q3

i Opaque Oblivious Mode i Opaque Oblivious Mode
i ObliDB (without Index) i ObliDB (Index Allowed)
---Spark SQL (No Security) ---Spark SQL (No Security)

Queries from Big Data Benchmark

Zheng et al, Opaque: An Oblivious and Encrypted Distributed Analytics Platform, 2017.

Comparison to Opaque

Linear storage method:

Comparison to Opaque Comparison to Opaque
com pa rable ‘ | No Index | ‘ Index Allowed
Combined storage method: = | i § R I bR
comparable - 19x speedup 2 | [7]| | Al B

:
Analytics within 2.6xof | | | (| || | |1 | L
-1 [T . [i | 10 l ==
Spark SQL Ql Q2~ ‘ Q3 Q1 QZ. . Q3

i Opaque Oblivious Mode i Opaque Oblivious Mode

i ObliDB (without Index) i ObliDB (Index Allowed)

---Spark SQL (No Security) ---Spark SQL (No Security)

Oblivious Index only:
y Queries from Big Data Benchmark

<2X SIOWd own Vs Comblned Zheng et al, Opaque: An Oblivious and Encrypted Distributed Analytics Platform, 2017.

Summary

ObliDB: Secure hardware enclave
+ new oblivious operator algorithms
+ multiple storage methods

= fast oblivious performance on analytic AND transactional queries

See paper at https://arxiv.org/pdf/1710.00458.pdf

Source code available at https://github.com/SabaEskandarian/ObliDB

Extra Slides

Prior/Concurrent Oblivious Systems over SGX

Opaque [zDBPGS17] (Prior): oblivious analytics, no support for indexes

Oblix (MpccpP18], POSUP [HOJY18]: oblivious indexes, but no operators over them
StealthDB [GvG17]: SGX database, no integrity or access pattern protection for index
EnclaveDB [pvc18]: SGX database, no access pattern protection (not oblivious)
VeritasDB [sc18]: integrity for key-value store over SGX

ZeroTrace [SGF17] (Prior): ORAM for oblivious key-value store over SGX

ObliDB: Obliviousness, Integrity, support for queries regardless of selectivity

Oblivious SELECT

“Hash” SELECT Algorithm
Goal: only one additional scan over data, regardless of query selectivity
|Idea: Hash each input row to an output row
Obliviousness considerations:
- Hash based on row number, not contents
- Oblivious collision handling: average case — worst case

Asymptotically best strategy, but often outperformed by special cases

Tool: B+ Tree

Often used for indexes in databases 3|5

Generalization of binary search tree ff‘_. I[| .\L\

All data in the leaves .1 .2 .3 .4 -5| .?. |
Average-case insert/delete very fast dy d, dy d, dls dLG dl7

. . Source: Wikimedia Commons
Worst-case insert/delete modifies tree https://commons.wikimedia.org/wiki/File:Bplustree.png

at every level

Good for minimizing pointer traversals

Performance: Comparison to Sophos

Searchable symmetric encryption Select oo 1.4 Million R Tibl
scheme without obliviousness 162 g , o
Supports only keyword lookups 7 o |

Does not use hardware enclaves ol

10! 10% 10* 10°
Rows Selected

—8— Sophos —85— ObliDB

22x speedup or more

Bost, Sophos - Forward Secure Searchable Encryption, 2016.

