
ObliDB: Oblivious Query Processing
using Hardware Enclaves
Saba Eskandarian Matei Zaharia

Private Data in the Cloud

Compromised cloud can:

Read data
Read queries
Alter data

Private Data in the Cloud

Compromised cloud can:

Read data
Read queries
Alter data

Private Data in the Cloud

Compromised cloud can:

Read data
Read queries
Alter data

Private Data in the Cloud

Compromised cloud can:

Read data
Read queries
Alter data

Private Data in the Cloud

Compromised cloud can:

Read data
Read queries
Alter data

Private Data in the Cloud

Compromised cloud can:

Read data
Read queries
Alter data

(Purely) Cryptographic Solutions

Huge body of work on how to protect databases with cryptography

Various tradeoffs between functionality, performance, and security,
but relatively little industry adoption thus far.

Fuller et al., SoK: Cryptographically Protected Database Search, 2017.

(Purely) Cryptographic Solutions

Huge body of work on how to protect databases with cryptography

Various tradeoffs between functionality, performance, and security,
but relatively little industry adoption thus far.

Minimum Requirements:

● Broad support for common workloads

● Acceptable performance

● Strong security guarantees

Fuller et al., SoK: Cryptographically Protected Database Search, 2017.

Outline
● Intro: Protecting Cloud Data

● Hardware Enclaves and Obliviousness

● ObliDB Design

○ Threat Model and Security Guarantees

○ SELECT Algorithms

○ Oblivious Indexes

● ObliDB Performance Evaluation

Hardware Enclaves
A trusted component in an untrusted system

● Uses protected memory to isolate enclave execution from compromised OS

● Proves that it is an authentic enclave running the desired code with attestation

● Enclaves in our implementation use Intel SGX

Untrusted System

Enclave

-Data
-SecretsClient

Attestation/Communication

Secure
Channel

Adversary who controls OS
still can’t see inside enclave

“We are exploring future backends based on AMD Secure Encryption
Virtualization (SEV) technology, Intel® Software Guard Extensions (Intel® SGX)”

Enclaves in the Cloud

Enclave

Enclave space is limited, but data is big!

Enclaves in the Cloud

Enclave

Enclaves in the Cloud

Enclave

Malicious attacker can observe access
patterns to encrypted data!

Enclaves in the Cloud

Enclave

Malicious attacker can observe access
patterns to encrypted data!

Enclaves in the Cloud

Enclave

Malicious attacker can observe access
patterns to encrypted data!

Enclaves in the Cloud

Enclave

Malicious attacker can observe access
patterns to encrypted data!

“A persistent passive attacker can
extract even more information by
observing an application’s access
patterns … In our case study
applications, this reveals users’
medical conditions, genomes, and
contents of shopping carts”

Goal: Obliviousness
Leakage attacks observe access patterns to protected memory

Problem: Leakage of access patterns completely compromises security

Solution: design enclave operation to be oblivious of input data

Access 1, 2 Access 4, 5 Access 1, 2 Access 4, 5

Decouple memory
accesses from
sensitive data

Introducing ObliDB
Functionality:
Oblivious query processing algorithms for both transactional and analytic queries

Supports most SQL operations (SELECT, GROUP BY, JOIN, various aggregates)

Security:
Protects against powerful attacker with full control of the OS

Performance:
Point queries 7-22x faster than (non-enclave) prior work (Sophos, HIRB)

Analytic queries 20-330x faster than naive, 1-19x faster than prior work (Opaque)

Threat Model
ObliDB protects against an attacker with full control of the OS who can:

● Read and tamper with all of untrusted memory

● Pause and resume enclave execution

● Observe access patterns to untrusted memory

● Monitor network communications

● Know auxiliary information about data stored

Threat Model
ObliDB protects against an attacker with full control of the OS who can:

● Read and tamper with all of untrusted memory

● Pause and resume enclave execution

● Observe access patterns to untrusted memory

● Monitor network communications

● Know auxiliary information about data stored

● Assumption: limited oblivious memory pool (same as Opaque)

Security Guarantees

ObliDB protects data and query parameters:

● Detects any malicious attempt to tamper with data

● Leaks only query selectivity, table sizes (including intermediate tables), and

query plan

● Optional padding mode available to hide table sizes and query selectivity

ObliDB Overview
Oblivious database engine with support for
both transactional and analytic queries

Tables stored encrypted in untrusted
memory but access patterns hidden

Two storage methods: linear tables and
oblivious indexes

Enclave used to store keys/metadata and
as working space for sensitive operations

SELECT Algorithms

Storage Methods: Linear
Access every block every time!

Good when accessing most blocks anyway

Used when we only need oblivious analytics

Access 1, 2 Access 4, 5 Access 1, 2 Access 4, 5

Decouple memory
accesses from
sensitive data

Point Read: O(N)
Large Read: O(N)
Insertion: O(1)
Deletion: O(N)

Storage Methods: Linear
Access every block every time!

Good when accessing most blocks anyway

Used when we only need oblivious analytics

Access 1, 2 Access 4, 5 Access 1, 2 Access 4, 5

Decouple memory
accesses from
sensitive data

Point Read: O(N)
Large Read: O(N)
Insertion: O(1)
Deletion: O(N)

Oblivious SELECT
First pass over data: determine size of output table, pick strategy to satisfy query

Input Table

“5 rows
selected”

Enclave
Output Table

Allocate

4 Strategies

Continuous
Large
Small
Hash

Oblivious SELECT
First pass over data: determine size of output table, pick strategy to satisfy query

Input Table

“5 rows
selected”

Enclave
Output Table

Allocate

4 Strategies

Small
Continuous
Large
Hash

Q: Why not just select at the same time as the first pass?
A: Naive SELECT is not oblivious!

Oblivious SELECT
Naive SELECT is not oblivious!

*

*

*
*

*

Input Table

“Can only
fit 2 rows”

Enclave
Output Table

Oblivious SELECT
Naive SELECT is not oblivious!

*

*

*
*

*

Input Table

“Can only
fit 2 rows”

Enclave
Output Table

Oblivious SELECT
Naive SELECT is not oblivious!

*

*

*
*

*

Input Table

“Can only
fit 2 rows”

Enclave
Output Table

*

Oblivious SELECT
Naive SELECT is not oblivious!

*

*

*
*

*

Input Table

“Can only
fit 2 rows”

Enclave
Output Table

*

Oblivious SELECT
Naive SELECT is not oblivious!

*

*

*
*

*

Input Table

“Can only
fit 2 rows”

Enclave
Output Table

*

Oblivious SELECT
Naive SELECT is not oblivious!

*

*

*
*

*

Input Table

“Can only
fit 2 rows”

Enclave
Output Table

*
*

Oblivious SELECT
Naive SELECT is not oblivious!

*

*

*
*

*

Input Table

“Can only
fit 2 rows”

Enclave
Output Table

*
*
*
*
*

Oblivious SELECT
Naive SELECT is not oblivious!

*

*

*
*

*

Input Table

“Can only
fit 2 rows”

Enclave
Output Table

*
*
*
*
*

Watching when we write to the output table reveals
exactly which rows of the input table we select!

Oblivious SELECT
“Small” SELECT algorithm

*

*

*
*

*

Input Table

“Can only
fit 2 rows”

Enclave
Output Table

*
*

Oblivious SELECT
“Small” SELECT algorithm

*

*

*
*

*

Input Table

“Can only
fit 2 rows”

Enclave
Output Table

*
*
*
*

Oblivious SELECT
“Small” SELECT algorithm

*

*

*
*

*

Input Table

“Can only
fit 2 rows”

Enclave
Output Table

*
*
*
*
*

Oblivious SELECT
“Continuous” SELECT algorithm

*
*
*
*
*

Input Table

Enclave
Output Table

*
*
*

Dummy
write

Real
write

Oblivious SELECT
“Continuous” SELECT algorithm

*
*
*
*
*

Input Table

Enclave
Output Table

*
*
*
*
*

Dummy
write

Real
write

Oblivious SELECT
“Large” SELECT Algorithm

*

*
*
*
*
*

*
*

Input Table

Enclave

Output Table
*

*
*
*
*
*

*
*

Copy

Extra

Extra

Oblivious SELECT
“Large” SELECT Algorithm

*

*
*
*
*
*

*
*

Input Table

Enclave

Output Table
*
X
*
*
*
*
*
X
*
*

Copy

Delete

Dummy write

Oblivious Indexes

Tool: ORAM
Crypto primitive to generically hide access patterns to data

Security guarantee: two memory traces of the same length are indistinguishable

Important: does not automatically give obliviousness

Key question: how can we use ORAM to make indexes oblivious?

Goldreich and Ostrovsky, Software Protection and Simulation on Oblivious RAMs, 1993.
Shi et al, PATH ORAM: An Extremely Simple Oblivious RAM Protocol, 2012.

Oblivious Indexes: Considerations
● Naive composition of ORAM + Index NOT oblivious

● Generic solution: pad everything to maximum number of possible accesses

● How to do this without destroying performance?

○ Choice of index data structure (T tree, B tree, B+ tree, other?)

○ Make the worst case less bad (optimize for enclave/ORAM setting)

○ Small average-case improvements can be big worst-case improvements

Oblivious Indexes
Naive composition of ORAM and B+ Tree is not oblivious!

All data in leaves → ORAM ensures oblivious access

Insert/Delete → number of operations depends on data

First solution: pad all inserts/deletes to worst-case number of ORAM accesses,

 but this is too slow.

Oblivious Indexes
Optimizations:

1. Cache nodes accessed during insertion/deletion
inside enclave until certain they will not be
accessed again

2. Remove parent pointers

3. Pad operation to worst-case number of operations,

knowing we have made optimizations (1) and (2)

Point Read: O(log2N)
Large Read: O(N)
Insertion: O(log2N)
Deletion: O(log2N)

Oblivious Indexes
Optimizations:

1. Cache nodes accessed during insertion/deletion
inside enclave until certain they will not be
accessed again

2. Remove parent pointers

3. Pad operation to worst-case number of operations,

knowing we have made optimizations (1) and (2)

Point Read: O(log2N)
Large Read: O(N)
Insertion: O(log2N)
Deletion: O(log2N)

Why not O(NlogN)?

Can do linear scan over ORAM
data structure without using
ORAM algorithm

Enables analytics on frequently
updated table!

Performance

Design Validation
Effectiveness of OptimizerChoice of Storage Method

Design Validation
Effectiveness of Optimizer

Query Selectivity Alg. Choice

5% of table, continuous Small

5% of table, non-continuous Small

95% of table, continuous Continuous

95% of table, non-continuous Large

Choice of Storage Method

Queries over 100k row table

Workload Type Best Storage
Method

90% Insert, 5% Point/Large read Combined

90% Small read, 9% Insert, 1% Delete Index

50% Large read, 50% Point read Combined

45% Point/Large read, 5% Insert/Delete Combined

90% Large read, 5% Insert/Delete Linear

Takeaway: Variety of storage
methods and operator algorithms
helpful for diverse workloads!

Comparison to Baseline
Performance vs baseline based on naive use of index/operators with ORAM

Queries over Consumer Financial Protection Bureau dataset: ~107k rows

Query Type Speedup

Range Selection (Linear) 29.2x

Group By Aggregate (Linear) 185x

Range Selection (Index) 1.4x

Point Selection (Index) 1.5x

Insert (Index) 64x

Delete (Index) 15x

Comparison to HIRB + vORAM

7.6x faster for point query on 1M row table

HIRB Tree does not support range queries

Difference: enclave security guarantees

Roche et al, A Practical Oblivious Map Data Structure with
Secure Deletion and History Independence, 2016.

Comparison to Opaque
Linear storage method:

comparable

Zheng et al, Opaque: An Oblivious and Encrypted Distributed Analytics Platform, 2017.

Queries from Big Data Benchmark

Comparison to Opaque
Linear storage method:

comparable

Combined storage method:

comparable - 19x speedup

Analytics within 2.6x of

Spark SQL

Zheng et al, Opaque: An Oblivious and Encrypted Distributed Analytics Platform, 2017.

Queries from Big Data Benchmark

Comparison to Opaque
Linear storage method:

comparable

Combined storage method:

comparable - 19x speedup

Analytics within 2.6x of

Spark SQL

Oblivious Index only:

 <2x slowdown vs combined Zheng et al, Opaque: An Oblivious and Encrypted Distributed Analytics Platform, 2017.

Queries from Big Data Benchmark

Summary
ObliDB: Secure hardware enclave

+ new oblivious operator algorithms

+ multiple storage methods

= fast oblivious performance on analytic AND transactional queries

See paper at https://arxiv.org/pdf/1710.00458.pdf

Source code available at https://github.com/SabaEskandarian/ObliDB

Extra Slides

Prior/Concurrent Oblivious Systems over SGX
Opaque [ZDBPGS17] (Prior): oblivious analytics, no support for indexes

Oblix [MPCCP18], POSUP [HOJY18]: oblivious indexes, but no operators over them

StealthDB [GVG17]: SGX database, no integrity or access pattern protection for index

EnclaveDB [PVC18]: SGX database, no access pattern protection (not oblivious)

VeritasDB [SC18]: integrity for key-value store over SGX

ZeroTrace [SGF17] (Prior): ORAM for oblivious key-value store over SGX

ObliDB: Obliviousness, Integrity, support for queries regardless of selectivity

Oblivious SELECT
“Hash” SELECT Algorithm

Goal: only one additional scan over data, regardless of query selectivity

Idea: Hash each input row to an output row

Obliviousness considerations:

- Hash based on row number, not contents

- Oblivious collision handling: average case → worst case

Asymptotically best strategy, but often outperformed by special cases

Tool: B+ Tree
Often used for indexes in databases

Generalization of binary search tree

All data in the leaves

Average-case insert/delete very fast

Worst-case insert/delete modifies tree
at every level

Good for minimizing pointer traversals

Source: Wikimedia Commons
https://commons.wikimedia.org/wiki/File:Bplustree.png

Performance: Comparison to Sophos
Searchable symmetric encryption
scheme without obliviousness

Supports only keyword lookups

Does not use hardware enclaves

22x speedup or more

Bost, Sophos - Forward Secure Searchable Encryption, 2016.

