
ObliDB: Oblivious Query Processing
for Secure Databases

 Saba Eskandarian Matei Zaharia
 Stanford University Stanford University

Private Data in the Cloud

Compromised cloud can:

Read data
Read queries
Alter data

Hardware Enclaves
A trusted component in untrusted hardware

● Isolation through protected memory

● Authenticity through attestation

Currently available through Azure and IBM cloud, among others

Untrusted System

Enclave
-Data
-Secrets

Client
Attestation/Communication

Secure
Channel

Malicious OS with
physical access to device
still can’t see inside enclave

Enclaves in the Cloud

Enclave

Enclave memory is limited, but data is big!

Enclaves in the Cloud

Enclave

Enclaves in the Cloud

Enclave

Malicious attacker can observe access
patterns to encrypted data!

Enclaves in the Cloud

Enclave

Malicious attacker can observe access
patterns to encrypted data!

Enclaves in the Cloud

Enclave

Malicious attacker can observe access
patterns to encrypted data!

Enclaves in the Cloud

Enclave

Malicious attacker can observe access
patterns to encrypted data!

“A persistent passive attacker can
extract even more information by
observing an application’s access
patterns … In our case study
applications, this reveals users’
medical conditions, genomes, and
contents of shopping carts”

Naive SELECT is not oblivious!

*

*

*
*

*

Input Table

Output Table

Naive SELECT is not oblivious!

*

*

*
*

*

Input Table

Output Table

Naive SELECT is not oblivious!

*

*

*
*

*

Input Table

Output Table

*

Naive SELECT is not oblivious!

*

*

*
*

*

Input Table

Output Table

*

Naive SELECT is not oblivious!

*

*

*
*

*

Input Table

Output Table

*

Naive SELECT is not oblivious!

*

*

*
*

*

Input Table

Output Table

*
*

Naive SELECT is not oblivious!

*

*

*
*

*

Input Table

Output Table

*
*
*
*
*

Naive SELECT is not oblivious!

*

*

*
*

*

Input Table

Output Table

*
*
*
*
*

Watching when we write to the output table reveals
exactly which rows of the input table we select!

Toward Obliviousness

Prior work solves pieces of the obliviousness problem very well

Toward Obliviousness

Prior work solves pieces of the obliviousness problem very well

Opaque provides obliviousness for analytic queries that scan entire
tables, but no support for indexes

Toward Obliviousness

Prior work solves pieces of the obliviousness problem very well

Opaque provides obliviousness for analytic queries that scan entire
tables, but no support for indexes

Oblix provides an oblivious index, but using an oblivious index to
process a query obliviously is still non-trivial

Toward Obliviousness

Prior work solves pieces of the obliviousness problem very well

Opaque provides obliviousness for analytic queries that scan entire
tables, but no support for indexes

Oblix provides an oblivious index, but using an oblivious index to
process a query obliviously is still non-trivial

This work: ObliDB, first system to provide obliviousness for
general database read workloads over multiple access methods

● Tables stored encrypted in unprotected memory, enclave only holds metadata
● Two oblivious storage methods: flat tables and oblivious indexes
● Supports most SQL operations
● Various algorithms for each operation - can pick best option at runtime

ObliDB Overview

Enclave

Table 1
Indexed

Table 2
Flat

Table 3
Both

Untrusted RAM or Disk

Metadata

Oblivious
Operators

Optimizer

Integrity
Checks

Protected
Memory

Server

Client ...Secure Channel

Security Guarantees

ObliDB protects data and query parameters against an attacker with full control of

the OS and VMM

● Detects any malicious attempt to tamper with data

● Leaks only query selectivity, table sizes (including intermediate tables), and

query plan

● Optional padding mode available to hide table sizes and query selectivity

● Assumption: limited oblivious memory pool

Oblivious Operators
● Selection

○ Small
○ Large
○ Continuous
○ Hash

● Grouping and Aggregation

● Joins
○ Oblivious hash join
○ Oblivious sort-merge join (from Opaque)
○ Zero oblivious memory sort-merge join

Oblivious Operators
● Selection

○ Small
○ Large
○ Continuous
○ Hash

● Grouping and Aggregation

● Joins
○ Oblivious hash join
○ Oblivious sort-merge join (from Opaque)
○ Zero oblivious memory sort-merge join

Oblivious optimizer
chooses best algorithm for
each query at runtime

Oblivious Operators
● Selection

○ Small
○ Large
○ Continuous
○ Hash

● Grouping and Aggregation

● Joins
○ Oblivious hash join
○ Oblivious sort-merge join (from Opaque)
○ Zero oblivious memory sort-merge join

Oblivious optimizer
chooses best algorithm for
each query at runtime

Oblivious SELECT
“Large” SELECT Algorithm: use when almost the whole table is selected

*

*
*
*
*
*

*
*

Input Table Output Table
*

*
*
*
*
*

*
*

Copy

Extra

Extra

Oblivious SELECT

*

*
*
*
*
*

*
*

Input Table Output Table
*
X
*
*
*
*
*
X
*
*

Copy

Delete

Dummy write

“Large” SELECT Algorithm: use when almost the whole table is selected

Oblivious SELECT
“Continuous” SELECT algorithm: use when a continuous range of rows is selected

*
*
*
*
*

Input Table

Output Table

*
*
*

Dummy
write

Real
write

Oblivious SELECT
“Continuous” SELECT algorithm: use when a continuous range of rows is selected

*
*
*
*
*

Input Table

Output Table

*
*
*
*
*

Dummy
write

Real
write

ObliDB
Performance highlights:

- 1.1-19x faster than Opaque (on Big Data Benchmark queries)

- Within 2.6x of Spark SQL (on Big Data Benchmark queries)

See paper for system details, more oblivious operators, and full evaluation

Paper: http://www.vldb.org/pvldb/vol13/p169-eskandarian.pdf

Source Code: https://github.com/SabaEskandarian/ObliDB

Questions/Contact: saba@cs.stanford.edu

