
Privacy-Preserving Payment Splitting
Saba Eskandarian Mihai Christodorescu Payman Mohassel

 Stanford University Visa Research Facebook

Payment Splitting Apps

Splitwise, Receipt Ninja, Billpin, SpotMe, Conmigo, Settle Up, …

Convenient way to keep track of costs and debts between groups of friends or colleagues

Payment Splitting Apps

Splitwise, Receipt Ninja, Billpin, SpotMe, Conmigo, Settle Up, …

Convenient way to keep track of costs and debts between groups of friends or colleagues

Privacy Policy – Data We Collect:

“This data includes, for example, group names, expense descriptions and amounts,
payments and their confirmation numbers, comments and reminders, receipt images,
notes, and memos, in addition to any other information that you attach or share while
using …”

“… the types of expenses you add, the features you use, the actions you take, and the
time, frequency and duration of your activities”

Payment Splitting Apps

Splitwise, Receipt Ninja, Billpin, SpotMe, Conmigo, Settle Up, …

Convenient way to keep track of costs and debts between groups of friends or colleagues

Privacy Policy – Data We Collect:

“This data includes, for example, group names, expense descriptions and amounts,
payments and their confirmation numbers, comments and reminders, receipt images,
notes, and memos, in addition to any other information that you attach or share while
using …”

“… the types of expenses you add, the features you use, the actions you take, and the
time, frequency and duration of your activities”

“Personal Information collected may include your name, age, gender,
zip code, e-mail address, cell phone number, occupation, hometown,
college, personal interests, nickname, friend's list and information
about personal finances”

“… we may collect and process information about your actual
location, like GPS signals sent by a mobile device. We may also use
various technologies to determine location, such as sensor data …”

“We also use this information to offer you tailored content – like giving
you more relevant search results and ads.”

Payment Splitting Apps

Splitwise, Receipt Ninja, Billpin, SpotMe, Conmigo, Settle Up, …

Convenient way to keep track of costs and debts between groups of friends or colleagues

Privacy Policy – Data We Collect:

“This data includes, for example, group names, expense descriptions and amounts,
payments and their confirmation numbers, comments and reminders, receipt images,
notes, and memos, in addition to any other information that you attach or share while
using …”

“… the types of expenses you add, the features you use, the actions you take, and the
time, frequency and duration of your activities”

“Personal Information collected may include your name, age, gender,
zip code, e-mail address, cell phone number, occupation, hometown,
college, personal interests, nickname, friend's list and information
about personal finances”

“… we may collect and process information about your actual
location, like GPS signals sent by a mobile device. We may also use
various technologies to determine location, such as sensor data …”

“We also use this information to offer you tailored content – like giving
you more relevant search results and ads.”

“The app does use third party services that may collect information used to identify you.”

Goal: cash-like privacy for payment splitting

Generic Solutions

Homomorphic encryption based solutions
[e.g. Gen09, BGV11, GSW13]

Server-aided MPC solutions
[e.g. FKN94, KMR11/12, HLP11]

Zero-Knowledge Log Server
[e.g. zkLedger (NVV’18)]

Metadata-hiding anonymous group messaging?
[e.g. Riposte, Vuvuzela, Stadium, Pung, Atom]

Generic Solutions

Homomorphic encryption based solutions
[e.g. Gen09, BGV11, GSW13]

Server-aided MPC solutions
[e.g. FKN94, KMR11/12, HLP11]

Zero-Knowledge Log Server
[e.g. zkLedger (NVV’18)]

Metadata-hiding anonymous group messaging?
[e.g. Riposte, Vuvuzela, Stadium, Pung, Atom]

Goal 2: Strong performance and scalability

Our Solution

Same functionality as today’s payment
splitting apps

Hides user data from provider

Runs very fast:
<50ms/round on phone
<300𝜇s/round on server
(for realistic group sizes)

Consists mainly of AES and addition

(Dramatization, it was an online survey)

Informal User Survey

Sent to ~250 employees in Visa Palo
Alto office, got 51 responses

Some takeaways:

• Groups tend to be small

• Groups have only a few
transactions a day

• Transaction amounts are usually
fairly small amounts of money

Architecture Overview

Group members connect to server via app

Architecture Overview

Group members connect to server via app

Group members share secret key during setup

Architecture Overview

Group members connect to server via app

Group members share secret key during setup

System proceeds in a series of rounds

Architecture Overview

Group members connect to server via app

Group members share secret key during setup

System proceeds in a series of rounds

Users send vectors of encrypted data each round
– either transactions or cover traffic

Architecture Overview

Group members connect to server via app

Group members share secret key during setup

System proceeds in a series of rounds

Users send vectors of encrypted data each round
– either transactions or cover traffic

Server blindly sums values and sends results
(New balance, charger identity, integrity check)

Security Properties

Server Privacy: any two sets of transactions indistinguishable to server

Debtor Privacy: transaction hides who it puts into debt to others

Security Properties

Server Privacy: any two sets of transactions indistinguishable to server

Debtor Privacy: transaction hides who it puts into debt to others

User Integrity:

1) No user can create or destroy money (assume >0 honest users)

2) No user can undetectably frame an honest user for making a charge

Server Integrity: Malicious server can only cause denial of service

Security Properties

Server Privacy: any two sets of transactions indistinguishable to server

Debtor Privacy: transaction hides who it puts into debt to others

User Integrity:

1) No user can create or destroy money (assume >0 honest users)

2) No user can undetectably frame an honest user for making a charge

Server Integrity: Malicious server can only cause denial of service

Limitations:

We do not hide group membership from the server

We do not protect against collusion between a malicious user and server

Making a Request

Example: Alice requests $1 from Bob in their friend group

Faces from sweetclipart.com

Making a Request

Example: Alice requests $1 from Bob in their friend group

Alice sets her vector to all 0s except a 1 in Bob’s position

Faces from sweetclipart.com

0 1 00

Making a Request

Example: Alice requests $1 from Bob in their friend group

Alice sets her vector to all 0s except a 1 in Bob’s position

Anyone not making a charge puts a 1 in their own position

Faces from sweetclipart.com

0 1 00

0 0 100 0 010 01 0

Making a Request

Example: Alice requests $1 from Bob in their friend group

Alice sets her vector to all 0s except a 1 in Bob’s position

Anyone not making a charge puts a 1 in their own position

Faces from sweetclipart.com

0 1 00

Each user encrypts
his/her vector and
sends the result to
the server

Making a Request

Example: Alice requests $1 from Bob in their friend group

Alice sets her vector to all 0s except a 1 in Bob’s position

Anyone not making a charge puts a 1 in their own position

Faces from sweetclipart.com

0 1 00

0 0 100 0 010 01 0

We’ll start by
showing the
protocol without
encryption

Making a Request

The server adds up everyone’s values and subtracts 1

0 1 00

0 1 00

0 0 01

0 0 10

-1 -1 -1-1

-1 1 00

+

Making a Request

The server adds up everyone’s values and subtracts 1

The result is added to users’ existing balances

Note: server tracks debt, so negative is less debt

+

1-1

0 1 00

0 1 00

0 0 01

0 0 10

-1 -1 -1-1

-1 1 00

Tracing Charges

How does Bob know it was Alice who charged him?

Tracing Charges

How does Bob know it was Alice who charged him?

For each user, server takes “(input in user’s own position) – 1”

1 10 1⟶ -1 ⟶ 0 ⟶ 0 ⟶ 0

Tracing Charges

How does Bob know it was Alice who charged him?

For each user, server takes “(input in user’s own position) – 1”

Multiplies by a power of 2 assigned to that user

1 10 1⟶ -1 ⟶ 0 ⟶ 0 ⟶ 0

 x1 = -1 + x2 = 0 + x4 = 0 + x8 = 0

Tracing Charges

How does Bob know it was Alice who charged him?

For each user, server takes “(input in user’s own position) – 1”

Multiplies by a power of 2 assigned to that user

And sums up the results to identify the charger(s)

1 10 1⟶ -1 ⟶ 0 ⟶ 0 ⟶ 0

 x1 = -1 + x2 = 0 + x4 = 0 + x8 = 0

= -1 ⟶

Tracing Charges

For each user, server takes “(input in user’s own position) – 1”

Multiplies by a power of 2 assigned to that user

And sums up the results to identify the charger(s)

Examples

 -1 0 0 0
 x1 + x2 + x4 + x8 = -1 ⟶

 -1 0 0 -1
 x1 + x2 + x4 + x8 = -9 ⟶

Tracing Charges

For each user, server takes “(input in user’s own position) – 1”

Multiplies by a power of 2 assigned to that user

And sums up the results to identify the charger(s)

Examples

What to do for collisions? Roll back and repeat one by one (server is oblivious)

 -1 0 0 0
 x1 + x2 + x4 + x8 = -1 ⟶

 -1 0 0 -1
 x1 + x2 + x4 + x8 = -9 ⟶

Adding Server Privacy

Observation 1: server does the same fixed set of additions every round.

No data-dependent operations

Adding Server Privacy

Observation 1: server does the same fixed set of additions every round.

No data-dependent operations

Observation 2: all the clients share a secret key k.

They can independently generate the same PRF outputs

Adding Server Privacy

Solution:

Instead of actually encrypting, users mask values with a PRF output

They send v
i
 + r

i
, where r

i
 = PRF(k, group, user, round, i)

Users calculate sum of masks and remove them from server responses

Calculating/removing masks fast because it’s just AES and addition

Extensions

• Integrity

• Larger transactions

•Multiple charges per Round

• Identifying misbehaving users

• Handling framing

•Handling users going offline

• Improving usability for charge requests

• Integration with payment systems

• Payment splitting with collateral

See paper for details!

Extensions

• Integrity

• Larger transactions

•Multiple charges per Round

• Identifying misbehaving users

• Handling framing

•Handling users going offline

• Improving usability for charge requests

• Integration with payment systems

• Payment splitting with collateral

See paper for details!

Extensions

• Integrity

• Larger transactions

•Multiple charges per Round

• Identifying misbehaving users

• Handling framing

•Handling users going offline

• Improving usability for charge requests

• Integration with payment systems

• Payment splitting with collateral

See paper for details!

Performance

Client Performance

<50ms/round for realistic groups
(realistic based on user survey)

Malicious server overhead <20ms

Only computes AES and addition

Client bandwidth for group size:
10 (≥69%of groups in survey): 160 Bytes

25 (≥92% of groups in survey): 400 Bytes

100 (≥100% of groups in survey): 1.6Kb

Server Performance

<300 microseconds for realistic groups
(realistic based on user survey)

No changes for malicious security

Only computes addition

Server memory requirements small –
can handle user inputs as they arrive, no
need to keep in memory

See paper for more evaluation details

Summary

Our system allows payment-splitting groups to hide

- Who pays,

- Who is paid,

- How much is spent,

- When transactions are made,

- And more

From a potentially malicious server at minimal performance cost

Contact: saba@cs.stanford.edu

