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Goal: cash-like privacy for payment splitting 
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Goal 2: Strong performance and scalability



Our Solution

Same functionality as today’s payment 
splitting apps

Hides user data from provider

Runs very fast: 
<50ms/round on phone 
<300𝜇s/round on server
(for realistic group sizes)

Consists mainly of AES and addition



(Dramatization, it was an online survey)

Informal User Survey

Sent to ~250 employees in Visa Palo 
Alto office, got 51 responses

Some takeaways:

• Groups tend to be small

• Groups have only a few 
transactions a day

• Transaction amounts are usually 
fairly small amounts of money
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Architecture Overview

Group members connect to server via app

Group members share secret key during setup

System proceeds in a series of rounds

Users send vectors of encrypted data each round 
– either transactions or cover traffic

Server blindly sums values and sends results
(New balance, charger identity, integrity check)
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Security Properties

Server Privacy: any two sets of transactions indistinguishable to server

Debtor Privacy: transaction hides who it puts into debt to others

User Integrity: 

1) No user can create or destroy money (assume >0 honest users)

2) No user can undetectably frame an honest user for making a charge

Server Integrity: Malicious server can only cause denial of service

Limitations:

We do not hide group membership from the server

We do not protect against collusion between a malicious user and server
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Making a Request

Example: Alice requests $1 from Bob in their friend group

Alice sets her vector to all 0s except a 1 in Bob’s position

Anyone not making a charge puts a 1 in their own position

Faces from sweetclipart.com

0 1 00

0 0 100 0 010 01 0

We’ll start by 
showing the 
protocol without 
encryption
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Making a Request

The server adds up everyone’s values and subtracts 1

The result is added to users’ existing balances

Note: server tracks debt, so negative is less debt

+

1-1

0 1 00

0 1 00

0 0 01
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-1 -1 -1-1

-1 1 00
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Tracing Charges

For each user, server takes  “(input in user’s own position) – 1”

Multiplies by a power of 2 assigned to that user

And sums up the results to identify the charger(s)

Examples

What to do for collisions? Roll back and repeat one by one (server is oblivious)
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Adding Server Privacy

Observation 1: server does the same fixed set of additions every round.

No data-dependent operations

Observation 2: all the clients share a secret key k.

They can independently generate the same PRF outputs



Adding Server Privacy

Solution:

Instead of actually encrypting, users mask values with a PRF output

They send v
i
 + r

i 
, where r

i
 = PRF(k, group, user, round, i)

Users calculate sum of masks and remove them from server responses

Calculating/removing masks fast because it’s just AES and addition
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• Integrity

• Larger transactions

•Multiple charges per Round

• Identifying misbehaving users

• Handling framing

•Handling users going offline

• Improving usability for charge requests

• Integration with payment systems

• Payment splitting with collateral

See paper for details!
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Client Performance

<50ms/round for realistic groups 
(realistic based on user survey)

Malicious server overhead <20ms

Only computes AES and addition

Client bandwidth for group size:
10 (≥69%of groups in survey): 160 Bytes

25 (≥92% of groups in survey): 400 Bytes

100 (≥100% of groups in survey): 1.6Kb



Server Performance

<300 microseconds for realistic groups 
(realistic based on user survey)

No changes for malicious security

Only computes addition

Server memory requirements small – 
can handle user inputs as they arrive, no 
need to keep in memory

See paper for more evaluation details



Summary

Our system allows payment-splitting groups to hide

- Who pays,

- Who is paid,

- How much is spent,

- When transactions are made,

- And more

From a potentially malicious server at minimal performance cost

Contact: saba@cs.stanford.edu


