
Fast Privacy-Preserving Punch Cards

Why go digital?

Customer convenience
No lost cards
Better bookkeeping
Hard to Counterfeit
Contactless

Why go digital?

Customer convenience
No lost cards
Better bookkeeping
Hard to Counterfeit
Contactless

Why go digital?

Customer convenience
No lost cards
Better bookkeeping
Hard to Counterfeit
Contactless

Why go digital?

Customer convenience
No lost cards
Better bookkeeping
Hard to Counterfeit
Contactless

Why NOT go digital?

Digital loyalty programs can be
data-stealing monsters*

Why go digital?

Customer convenience
No lost cards
Better bookkeeping
Hard to Counterfeit
Contactless

Why NOT go digital?

Digital loyalty programs can be
data-stealing monsters*

Can we get the benefits of
digital loyalty programs
without sacrificing privacy?

Existing Approaches
Anonymous credentials, eCash, uCentive

- Give customers an unlinkable token for each purchase

- Customer redeems by presenting a bunch of tokens

- Work scales linearly in the number of hole punches

Existing Approaches
Recent line of work: BBA [JR16], BBA+ [HHNR17], UACS [BBDE19], Bobolz et al.[BEKS20]

- “Black-box accumulation”/“Updatable anonymous credentials”

- Punch card storage and performance independent of number of punches

- Support for broader functionalities
- e.g., Offline double spending, negative points, partial redemption

- Performance could be improved -- reliance on pairings, involved proofs

- Mismatch between scheme and punch card deployment scenario

Our Work
Focus on real requirements for punch cards:

- No long-term user identity tied to a public key

- No server work to issue cards (avoids DoS)

- Minimizes round complexity

Our Work
Focus on real requirements for punch cards:

- No long-term user identity tied to a public key

- No server work to issue cards (avoids DoS)

- Minimizes round complexity

Improves performance:

- Removes reliance on pairings

- 14x faster card punch, 25x less communication

- 394x faster card redemption, 62x less communication

Punch Card Functionality

Server setup: initialize server secrets, database of redeemed cards

Card issuance: issue a fresh punch card

Card punch: add a punch to an existing punch card

Card redemption/validation: submit a completed punch card for a reward

Punch Card Security
Privacy: Server can’t link any issuances, punches, or redemptions to each other

Server can simulate everything it sees when issuing/punching/redeeming a card.

Soundness: Client can’t redeem more punches than it has received

Challenger allows adversary to punch and redeem cards. Adversary wins if more
punches redeemed than given.

First Attempt
Idea: server raises group element to secret power for each punch

Server

Setup
sk ←R Zq

First Attempt

Client

Issue
p0 ←R G

First Attempt

Client

Issue
p0 ←R G

Punch

Server

Setup
sk ←R Zq

Punch

pi+1 ← pi
sk

pi

pi+1

First Attempt

Client

Issue
p0 ←R G

Punch

Redeem

Server

Setup
sk ←R Zq

Punch

pi+1 ← pi
sk

Verify
Accept iff 1. pn = p0

sk^n

 2. p0 not redeemed before

pi

pi+1

p0,pn

First Attempt

Client

Issue
p0 ←R G

Punch

Redeem

Server

Setup
sk ←R Zq

Punch

pi+1 ← pi
sk

Verify
Accept iff 1. pn = p0

sk^n

 2. p0 not redeemed before

pi

pi+1

p0,pn

Neither private
nor sound!

Adding Privacy
Idea: client masks punch card before sending to server

Adding Privacy

Client

Punch
m ←R Zq

pi’ ← pi
m

pi+1 ←
(p’i+1)

m^-1

Server

Punch

p’i+1 ← (p’i)
sk

pi’

p’i+1

Idea: client masks punch card before sending to server

Adding Privacy

Client

Punch
m ←R Zq

pi’ ← pi
m

pi+1 ←
(p’i+1)

m^-1

Server

Punch

p’i+1 ← (p’i)
sk

pi’

p’i+1

Idea: client masks punch card before sending to server

Only semihonest security!

Malicious Privacy
Malicious attack: server raises one punch card to a different power

Malicious Privacy
Malicious attack: server raises one punch card to a different power

Defense: Server provides proof that it raised card to the same power each time

Malicious Privacy
Malicious attack: server raises one punch card to a different power

Defense: Server provides proof that it raised card to the same power each time

Modify server setup to include pk = gsk

Use Chaum-Pedersen Proof: Given g, pk, p,
 prove knowledge of sk s.t. pk=gsk, p’=psk

Adding Soundness
Current redeem process: client sends p0,pn

 Server checks pn= (p0)
sk^n, p0 not redeemed before

Adding Soundness
Current redeem process: client sends p0,pn

 Server checks pn= (p0)
sk^n, p0 not redeemed before

Attack:

1. Malicious client sends p0,pn
2. Server checks pn= (p0)

sk^n, p0 not redeemed before, redeems n points

Adding Soundness
Current redeem process: client sends p0,pn

 Server checks pn= (p0)
sk^n, p0 not redeemed before

Attack:

1. Malicious client sends p0,pn
2. Server checks pn= (p0)

sk^n, p0 not redeemed before, redeems n points
3. Malicious client gets another punch on pn, acquires pn+1

Adding Soundness
Current redeem process: client sends p0,pn

 Server checks pn= (p0)
sk^n, p0 not redeemed before

Attack:

1. Malicious client sends p0,pn
2. Server checks pn= (p0)

sk^n, p0 not redeemed before, redeems n points
3. Malicious client gets another punch on pn, acquires pn+1
4. Malicious client sends p1, pn+1
5. Server checks pn+1= (p1)

sk^(n+1), p1 not redeemed before, redeems n points

Adding Soundness
Current redeem process: client sends p0,pn

 Server checks pn= (p0)
sk^n, p0 not redeemed before

Attack:

1. Malicious client sends p0,pn
2. Server checks pn= (p0)

sk^n, p0 not redeemed before, redeems n points
3. Malicious client gets another punch on pn, acquires pn+1
4. Malicious client sends p1, pn+1
5. Server checks pn+1= (p1)

sk^(n+1), p1 not redeemed before, redeems n points

Client gets n+1 punches, redeems 2n points, breaks soundness

Adding Soundness
Idea: client can’t redeem a punch card p0 unless it knows the preimage of a hash
function (modeled as RO) that outputs p0

Client Server

Adding Soundness
Idea: client can’t redeem a punch card p0 unless it knows the preimage of a hash
function (modeled as RO) that outputs p0

Client

Issue
id ←R {0,1}ƛ

p0 ← H(id)

Server

Setup
sk ←R Zq
pk ←R g

sk

Adding Soundness
Idea: client can’t redeem a punch card p0 unless it knows the preimage of a hash
function (modeled as RO) that outputs p0

Client

Issue
id ←R {0,1}ƛ

p0 ← H(id)

...

Redeem

Server

Setup
sk ←R Zq
pk ←R g

sk

...

Verify
Accept iff 1. pn = H(id)sk^n

 2. id not redeemed before

id,pn

Proving Soundness
Proof in Algebraic Group Model (most prior work proven in more restrictive GGM)

Adversaries in the AGM must accompany each group element they send with a
representation of that group element in terms of previously seen elements

In this model, DDH-style assumptions are equivalent to discrete log

Proving Soundness
Proof in Algebraic Group Model (most prior work proven in more restrictive GGM)

Adversaries in the AGM must accompany each group element they send with a
representation of that group element in terms of previously seen elements

In this model, DDH-style assumptions are equivalent to discrete log

Proof relies on hardness of d-discrete log assumption: given g, gx, gx^2, gx^d, find x.

Proving Soundness
1. Let d-dlog group elements be X0=g, X1= gx, …, Xd=gx^d

Proving Soundness
1. Let d-dlog group elements be X0=g, X1= gx, …, Xd=gx^d

2. Set the server secret to be the d-dlog solution x

Proving Soundness
1. Let d-dlog group elements be X0=g, X1= gx, …, Xd=gx^d

2. Set the server secret to be the d-dlog solution x

3. Program RO so that every hash output is of the form gr where the soundness
challenger knows r ←R Zq (but output still looks random to the adversary)

Proving Soundness
1. Let d-dlog group elements be X0=g, X1= gx, …, Xd=gx^d

2. Set the server secret to be the d-dlog solution x

3. Program RO so that every hash output is of the form gr where the soundness
challenger knows r ←R Zq (but output still looks random to the adversary)

4. To punch a card, look at algebraic representation of punch card and replace
each Xi with Xi+1.

Proving Soundness
1. Let d-dlog group elements be X0=g, X1= gx, …, Xd=gx^d

2. Set the server secret to be the d-dlog solution x

3. Program RO so that every hash output is of the form gr where the soundness
challenger knows r ←R Zq (but output still looks random to the adversary)

4. To punch a card, look at algebraic representation of punch card and replace
each Xi with Xi+1.

5. Soundness adversary who wins the soundness game produces a punch card
whose representation does not include Xn

r, which gives the challenger 2
representations of Xn. It can use this to break discrete log.

Implementation
Java (Android) wrapper around Rust implementation

Main construction implemented using curve25519-dalek

Evaluated on Pixel 1 (client) and recent Thinkpad laptop with i5 processor (server)

Implementation
Java (Android) wrapper around Rust implementation

Main construction implemented using curve25519-dalek

Evaluated on Pixel 1 (client) and recent Thinkpad laptop with i5 processor (server)

Evaluated on empty database of used cards and database of 1,000,000 used
cards, numbers comparable (in prior work, larger DB is much more expensive)

Implementation
Java (Android) wrapper around Rust implementation

Main construction implemented using curve25519-dalek

Evaluated on Pixel 1 (client) and recent Thinkpad laptop with i5 processor (server)

Evaluated on empty database of used cards and database of 1,000,000 used
cards, numbers comparable (in prior work, larger DB is much more expensive)

Computation Comparison
Prior work evaluated on comparable hardware (Pixel/OnePlus 3, i7 processor)

Prior work uses BN curves with slightly lower security (~100 bits)

Each prior work dominated others in one part of protocol, our work improves on the
best prior work in each category by order(s) of magnitude

(All times in ms)

Communication Comparison
Only one prior work reports communication costs

Our scheme requires no server involvement to issue a card

(All sizes in bytes)

Fast Privacy-Preserving Punch Cards
Key takeaways:

- 14x faster card punch, 25x less communication than prior work

- 394x faster card redemption, 62x less communication than prior work

- Qualitative improvements to better capture punch card setting

See paper for more details and extensions

Paper: https://arxiv.org/pdf/2006.06079.pdf

Code: https://github.com/SabaEskandarian/PunchCard

Contact: saba@cs.stanford.edu

mailto:saba@cs.stanford.edu

