Fast Privacy-Preserving Punch Cards

— A d

Blend Eatery = inboxx 5

Jeeryn Dang_ 4:07 PM (3 minutes ago) ¥ &

to saba, Marc ~

Hello Saba,
Thank you for your email and checking in. We appreciate it tremendously.

We are currently still closed and don't have a tentative date to open yet. At the moment, we are waiting to hear back from Stanford as to when we will be able to get the green light. From what we understand,
research Is slowly ramping back up in phases. We were told that we may be able to open back up once research does, but there are still a lot of details that need to be ironed out before we can do so.

We are currently servicing hospital on Wednesdays and Thursdays via a pop-up location at their old cafe. This has allowed us to at least employ some of our staff.
Please don't hesitate to reach out if you have any additional questions. We look forward to being able to open back up and once again serving the University community. We miss you guys!

Cheers,
Jeeryn and Marc

BLENDERTERY.COM | (@BLENDER
& 4

BLENDERTERY.COM | (@BLENDERTER
b

Why go diqital?

Customer convenience
No lost cards

Better bookkeeping
Hard to Counterfeit
Contactless

[BLENDERTERY.COM | @BLENDERTERY 382 NORTH SOUTH AXiS STANFO

Why go diqital?

Customer convenience
No lost cards

Better bookkeeping
Hard to Counterfeit
Contactless

N\ BLENDEATERY.COM | @BLENDEATERY 382 NORTH SOUTH A

Why go diqital?

Customer convenience
No lost cards

Better bookkeeping
Hard to Counterfeit
Contactless

Hole Punch - Letter B - 3/16"

N\ BL(NU(RTE”UJH.% ['&’i:imﬂu.‘?' X

Why go diqital?

Customer convenience
No lost cards

Better bookkeeping
Hard to Counterfeit
Contactless

Why NOT go digital?

Digital loyalty programs can be
data-stealing monsters™

BUY 9 BOWLS, GET THE 10TH ONE FREE!

_ 3
% g LS
v

| Can we get the benefits of
—1digital loyalty programs

Wh di - e L -
" without sacrificing privacy?
Customer ¢ IS can be
No lost car 5™
Better bookkeeping

Hard to Counterfeit
Contactless

Existing Approaches

Anonymous credentials, eCash, uCentive
- Give customers an unlinkable token for each purchase
- Customer redeems by presenting a bunch of tokens

- Work scales linearly in the number of hole punches

Existing Approaches

Recent line of work: BBA wr16, BBA+ Hinr17, UACS BeDE19), BObOIZ et al.geks2o

- “Black-box accumulation”/“Updatable anonymous credentials”
- Punch card storage and performance independent of number of punches

- Support for broader functionalities
e.g., Offline double spending, negative points, partial redemption

- Performance could be improved -- reliance on pairings, involved proofs

- Mismatch between scheme and punch card deployment scenario

Our Work

Focus on real requirements for punch cards:

- No long-term user identity tied to a public key
- No server work to issue cards (avoids DoS)

- Minimizes round complexity

Our Work

Focus on real requirements for punch cards:

- No long-term user identity tied to a public key
- No server work to issue cards (avoids DoS)

- Minimizes round complexity

Improves performance:

- Removes reliance on pairings
- 14x faster card punch, 25x less communication

- 394x faster card redemption, 62x less communication

Punch Card Functionality

Server setup: initialize server secrets, database of redeemed cards

Card issuance: issue a fresh punch card

Card punch: add a punch to an existing punch card

Card redemption/validation: submit a completed punch card for a reward

Punch Card Security

Privacy: Server can'’t link any issuances, punches, or redemptions to each other

Server can simulate everything it sees when issuing/punching/redeeming a card.

Soundness: Client can’t redeem more punches than it has received

Challenger allows adversary to punch and redeem cards. Adversary wins if more
punches redeemed than given.

First Attempt

Idea: server raises group element to secret power for each punch

First Attempt

J Client Server
Issue

P, G Sk«—_Z

First Attempt

“S;!vCﬁent

Issue
poe—RCB

Punch

Pis1

Server

Setup
sk “—5 Z
q

Punch

sk
P < P,

First Attempt

J Client Server

Issue Setup
P, G Sk —, Zq
Punch Punch
Funcn D,
Pisq Py P
Redeem Verify
PP, Accept iff 1. p_=p ™

2. p, not redeemed before

First Attempt

Client : :
J Neither private

Issue nor sound!
Por G
Punch

P;

Pi.1
Redeem

pofpn

Server

Setup
sk —p Zq

Punch

sk
Pivs < P

Verify

Accept iff 1. p_=p ™

2. p, not redeemed before

Adding Privacy

|ldea: client masks punch card before sending to server

Adding Privacy

|ldea: client masks punch card before sending to server

Client Server
Punch Punch
m «—, Zq
P =P p’ |

P, Pivs (p’i)Sk
Pivs

(p’.)m™1

Adding Privacy

|ldea: client masks punch card before sending to server

Client Server
Eunch Punch
m <, Zq
p; < p" o
P, P ()
P, — Only semihonest security!

(p’.)m™1

Malicious Privacy

Malicious attack: server raises one punch card to a different power

Malicious Privacy

Malicious attack: server raises one punch card to a different power

Defense: Server provides proof that it raised card to the same power each time

Malicious Privacy

Malicious attack: server raises one punch card to a different power

Defense: Server provides proof that it raised card to the same power each time
Modify server setup to include pk = g%

Use Chaum-Pedersen Proof: Given g, pk, p,
prove knowledge of sk s.t. pk=g®*, p’=ps

Adding Soundness

Current redeem process: client sends p,p,

Server checks p = (p,)*", p, not redeemed before

Adding Soundness

Current redeem process: client sends p,p,
Server checks p = (p,)*", p, not redeemed before
Attack:

1. Malicious client sends p,,p,
2. Server checks p = (po)s"“”, p, not redeemed before, redeems n points

Adding Soundness

Current redeem process: client sends p,p,
Server checks p = (p,)*", p, not redeemed before
Attack:

1. Malicious client sends p,,p,
2. Server checks p = (po)s"“”, p, not redeemed before, redeems n points

3. Malicious client gets another punch on p , acquires p_,

Adding Soundness

Current redeem process: client sends p,p,

Server checks p = (p,)*", p, not redeemed before

Attack:

Malicious client sends p,,p,
Server checks p = (po)s"“”, p, not redeemed before, redeems n points

Malicious client gets another punch on p , acquires p__ .

Malicious client sends p_, p_,
— kNn+1 ;
Server checks p .= (p.)° (n+1), p, not redeemed before, redeems n points

akrowbd-~

Adding Soundness

Current redeem process: client sends p,p,

Server checks p = (p,)*", p, not redeemed before

Attack:

akrowbd-~

Malicious client sends p,,p,
Server checks p = (po)s"“”, p, not redeemed before, redeems n points

Malicious client gets another punch on p , acquires p__ .

Malicious client sends p_, p_,
— kNn+1 ;
Server checks p .= (p.)° (n+1), p, not redeemed before, redeems n points

Client gets n+1 punches, redeems 2n points, breaks soundness

Adding Soundness

Idea: client can’t redeem a punch card p, unless it knows the preimage of a hash
function (modeled as RO) that outputs p,

J Client Server

Adding Soundness

Idea: client can’t redeem a punch card p, unless it knows the preimage of a hash
function (modeled as RO) that outputs p,

J Client Server

Issue Setup
/d<—R{O,1}‘ Sk —5 Zq

p, — H(id) pk — g

Adding Soundness

Idea: client can’t redeem a punch card p, unless it knows the preimage of a hash
function (modeled as RO) that outputs p,

J Client Server

Issue Setup
/d<—R{0,1}‘ SK Zq
p, < H(id) Pk «—, g
Redeem id,p Verify
o - Accept iff 1. p_ = H(id)*"™"

2. id not redeemed before

Proving Soundness

Proof in Algebraic Group Model (most prior work proven in more restrictive GGM)

Adversaries in the AGM must accompany each group element they send with a
representation of that group element in terms of previously seen elements

In this model, DDH-style assumptions are equivalent to discrete log

Proving Soundness

Proof in Algebraic Group Model (most prior work proven in more restrictive GGM)

Adversaries in the AGM must accompany each group element they send with a
representation of that group element in terms of previously seen elements

In this model, DDH-style assumptions are equivalent to discrete log

Proof relies on hardness of d-discrete log assumption: given g, g¥, g%, g©"¢, find x.

Proving Soundness

1. Let d-dlog group elements be X, =g, X ,=g* ..., X =g*"

Proving Soundness

1. Let d-dlog group elements be X, =g, X.= g%, ..., X = xhd

2. Set the server secret to be the d-dlog solution x

Proving Soundness

x"Nd

1. Let d-dlog group elements be X =g, X.=¢g", ..., X =g
2. Setthe server secret to be the d-dlog solution x

3. Program RO so that every hash output is of the form g" where the soundness
challenger knows r <, Zq (but output still looks random to the adversary)

Proving Soundness

1. Let d-dlog group elements be X =g, X, = g* ..., X =g*"
2. Setthe server secret to be the d-dlog solution x

3. Program RO so that every hash output is of the form g" where the soundness
challenger knows r <, Zq (but output still looks random to the adversary)

4. To punch a card, look at algebraic representation of punch card and replace
each X with X'

j+1°

Proving Soundness

1. Let d-dlog group elements be X =g, X, = g* ..., X =g*"
2. Setthe server secret to be the d-dlog solution x

3. Program RO so that every hash output is of the form g" where the soundness
challenger knows r <, Zq (but output still looks random to the adversary)

4. To punch a card, look at algebraic representation of punch card and replace
each X with X'

+1
5. Soundness adversary who wins the soundness game produces a punch card

whose representation does not include X ', which gives the challenger 2
representations of X . It can use this to break discrete log.

Implementation

Java (Android) wrapper around Rust implementation
Main construction implemented using curve25519-dalek

Evaluated on Pixel 1 (client) and recent Thinkpad laptop with i5 processor (server)

Implementation

Java (Android) wrapper around Rust implementation
Main construction implemented using curve25519-dalek
Evaluated on Pixel 1 (client) and recent Thinkpad laptop with i5 processor (server)

Evaluated on empty database of used cards and database of 1,000,000 used
cards, numbers comparable (in prior work, larger DB is much more expensive)

Implementation

Java (Android) wrapper around Rust implementation
Main construction implemented using curve25519-dalek
Evaluated on Pixel 1 (client) and recent Thinkpad laptop with i5 processor (server)

Evaluated on empty database of used cards and database of 1,000,000 used
cards, numbers comparable (in prior work, larger DB is much more expensive)

ServerSetup |Issue| | ServerPunch ClientPunch| |ClientRedeem ServerVerify
Computation Time (ms) 0.019 0.304|0.134 4.314 0.890 0.064
Data Sent (Bytes) 32 0 128 32 64 0

Computation Comparison

Prior work evaluated on comparable hardware (Pixel/OnePlus 3, i7 processor)

Prior work uses BN curves with slightly lower security (~100 bits)

Each prior work dominated others in one part of protocol, our work improves on the
best prior work in each category by order(s) of magnitude

Issuing a Card Punching a Card Redeeming a Card
BBA+ scheme 115.27 385.61 375.73
UACS scheme 127 454
Bobolz et al. scheme 130 1254

Our main scheme

(All times in ms)

0.304 (282.99x faster)

4.448 (14.4X faster)

0.954 (393.8x faster)

Communication Comparison

Only one prior work reports communication costs

Our scheme requires no server involvement to issue a card

Issuing a Card Punching a Card Redeeming a Card
BBA+ scheme 992 4048 3984
Our main scheme 0 160 (25.3% reduction) 64 (62.3X reduction)

(All sizes in bytes)

Fast Privacy-Preserving Punch Cards

Key takeaways:
- 14x faster card punch, 25x less communication than prior work

- 394x faster card redemption, 62x less communication than prior work
- Qualitative improvements to better capture punch card setting

See paper for more details and extensions

Paper: https://arxiv.orqg/pdf/2006.06079.pdf
Code: https://github.com/SabaEskandarian/PunchCard

Contact: sabalcs.stanford.edu

mailto:saba@cs.stanford.edu

