
Single Secret Leader Election
Dan Boneh Saba Eskandarian Lucjan Hanzlik Nicola Greco

What is Single Secret Leader Election?
A group of participants want to randomly choose exactly one leader, such that:

1. Identity of the leader is known only to the leader and nobody else

2. Leader can later publicly prove that she is the leader

Should work even if many registered participants don’t send messages.

What is Single Secret Leader Election?
A group of participants want to randomly choose exactly one leader, such that:

1. Identity of the leader is known only to the leader and nobody else

2. Leader can later publicly prove that she is the leader

Should work even if many registered participants don’t send messages.

Applications of SSLE - PoS Blockchains
Need leader to submit blocks

Publicizing leader ahead of time makes the whole protocol vulnerable

Applications of SSLE - PoS Blockchains

Applications of SSLE - PoS Blockchains

A Non-Example
Common approach:

1. Everyone picks a random point on number line

A Non-Example
Common approach:

1. Everyone picks a random point on number line

2. Randomness beacon picks a random point on number line

A Non-Example
Common approach:

1. Everyone picks a random point on number line

2. Randomness beacon picks a random point on number line

3. Whoever is closest to the beacon wins

A Non-Example
Setup:
1. Choose λ-bit prime p
2. Randomness beacon that outputs R ∈ Fp

A Non-Example
Setup:
1. Choose λ-bit prime p
2. Randomness beacon that outputs R ∈ Fp

Election:
1. Each participant i picks a secret vi, produces commitment com(vi)

A Non-Example
Setup:
1. Choose λ-bit prime p
2. Randomness beacon that outputs R ∈ Fp

Election:
1. Each participant i picks a secret vi, produces commitment com(vi)
2. Beacon produces R ∈ Fp

A Non-Example
Setup:
1. Choose λ-bit prime p
2. Randomness beacon that outputs R ∈ Fp

Election:
1. Each participant i picks a secret vi, produces commitment com(vi)
2. Beacon produces R ∈ Fp
3. Any participant with |R - vi| < 10 * 2λ / N decommits to vi

A Non-Example
Setup:
1. Choose λ-bit prime p
2. Randomness beacon that outputs R ∈ Fp

Election:
1. Each participant i picks a secret vi, produces commitment com(vi)
2. Beacon produces R ∈ Fp
3. Any participant with |R - vi| < 10 * 2λ / N decommits to vi
4. Winner is participant with minimum |R - vi|

A Non-Example
Setup:
1. Choose λ-bit prime p
2. Randomness beacon that outputs R ∈ Fp

Election:
1. Each participant i picks a secret vi, produces commitment com(vi)
2. Beacon produces R ∈ Fp
3. Any participant with |R - vi| < 10 * 2λ / N decommits to vi
4. Winner is participant with minimum |R - vi|

This is almost what we want.

A Non-Example
Setup:
1. Choose λ-bit prime p
2. Randomness beacon that outputs R ∈ Fp

Election:
1. Each participant i picks a secret vi, produces commitment com(vi)
2. Beacon produces R ∈ Fp
3. Any participant with |R - vi| < 10 * 2λ / N decommits to vi
4. Winner is participant with minimum |R - vi|

This is almost what we want. Only the single leader publishes vi in expectation

A Non-Example
Setup:
1. Choose λ-bit prime p
2. Randomness beacon that outputs R ∈ Fp

Election:
1. Each participant i picks a secret vi, produces commitment com(vi)
2. Beacon produces R ∈ Fp
3. Any participant with |R - vi| < 10 * 2λ / N decommits to vi
4. Winner is participant with minimum |R - vi|

This is almost what we want. Only the single leader publishes vi in expectation

Why Single Secret Leader Election?
Having multiple potential leaders wastes effort and impedes consensus

From Protocol Labs RFC:

- Fork grinding

- Faster convergence

- Simpler protocol

Cost: requires a registration step

What Makes SSLE Challenging?
Want to minimize long-term storage

What Makes SSLE Challenging?
Want to minimize long-term storage

Want to minimize communication

What Makes SSLE Challenging?
Want to minimize long-term storage

Want to minimize communication

Want to minimize computation

What Makes SSLE Challenging?
Want to minimize long-term storage

Want to minimize communication

Want to minimize computation

Can’t expect every participant to send messages

What Makes SSLE Challenging?
Want to minimize long-term storage

Want to minimize communication

Want to minimize computation

Can’t expect every participant to send messages

Can’t expect every participant to stay online between rounds

Outline
Introduction

Formalizing SSLE

3 SSLE Constructions:

- From DDH & Shuffling

- From obfuscation

- From tFHE

SSLE Requirements
Three security properties:

1. Uniqueness: only one leader is chosen by the election

2. Unpredictability: non-winners cannot guess who the winner is

3. Fairness: each user has 1/N chance of becoming the leader

Goal: robust election where DoS of c/N users disrupts election with probability c/N

SSLE Requirements
Three security properties:

1. Uniqueness: only one leader is chosen by the election

2. Unpredictability: non-winners cannot guess who the winner is

3. Fairness: each user has 1/N chance of becoming the leader

Goal: robust election where DoS of c/N users disrupts election with probability c/N

Our focus will be on the elections, not on using them to build blockchains.

SSLE Syntax
All algorithms assume access to public state st

Elections have access to randomness beacon output R

SSLE Syntax
All algorithms assume access to public state st

Elections have access to randomness beacon output R

SSLE Algorithms

1. Setup
2. Registration
3. Registration verification
4. Election
5. Election verification

Formalizing Definitions
Adversary ChallengerSetup

Run setup→pp, st0,sk1, …, skN (if applicable) Choose set M⊆[N], |M|=c

pp, st0, {ski}i∈M

Formalizing Definitions
Adversary ChallengerSetup

Run setup→pp, st0,sk1, …, skN (if applicable) Choose set M⊆[N], |M|=c

pp, st0, {ski}i∈M

Elections
Register any users

Run registration verification for each
uncorrupted user. Output 0 if any fails.

Formalizing Definitions
Adversary ChallengerSetup

Run setup→pp, st0,sk1, …, skN (if applicable) Choose set M⊆[N], |M|=c

pp, st0, {ski}i∈M

Elections
Register any users

Run an election
Run registration verification for each
uncorrupted user. Output 0 if any fails.

(if uncorrupted winner)
Winner index i, proof πi

Formalizing Definitions
Adversary ChallengerSetup

Run setup→pp, st0,sk1, …, skN (if applicable) Choose set M⊆[N], |M|=c

pp, st0, {ski}i∈M

Elections
Register any users

Run an election
Run registration verification for each
uncorrupted user. Output 0 if any fails.

(if uncorrupted winner)
Winner index i, proof πi

Formalizing Definitions
Adversary ChallengerSetup

Run setup→pp, st0,sk1, …, skN (if applicable) Choose set M⊆[N], |M|=c

pp, st0, {ski}i∈M

Elections
Register any users

Run an election
Run registration verification for each
uncorrupted user. Output 0 if any fails.

(if uncorrupted winner)
Winner index i, proof πi

Challenge

Formalizing Definitions
Adversary ChallengerSetup

Run setup→pp, st0,sk1, …, skN (if applicable) Choose set M⊆[N], |M|=c

pp, st0, {ski}i∈M

Elections
Register any users

Run an election
Run registration verification for each
uncorrupted user. Output 0 if any fails.

(if uncorrupted winner)
Winner index i, proof πi

ChallengeUniqueness
(j,πj) for j∈M, for each
election in election phase Output 1 if for any election, there is

more than one tuple (k,πj) for which
election verification accepts.

Formalizing Definitions
Adversary ChallengerSetup

Run setup→pp, st0,sk1, …, skN (if applicable) Choose set M⊆[N], |M|=c

pp, st0, {ski}i∈M

Elections
Register any users

Run an election
Run registration verification for each
uncorrupted user. Output 0 if any fails.

(if uncorrupted winner)
Winner index i, proof πi

ChallengeUnpredictability
Run one last election

Guess winner is user i∈[N]

If winner is not in [N]\M, output 0.
Otherwise, if winner is user i, output 1.
Secure if challenger never outputs 1
with probability greater than 1/(N-c).

Formalizing Definitions
Adversary ChallengerSetup

Run setup→pp, st0,sk1, …, skN (if applicable) Choose set M⊆[N], |M|=c

pp, st0, {ski}i∈M

Elections
Register any users

Run an election
Run registration verification for each
uncorrupted user. Output 0 if any fails.

(if uncorrupted winner)
Winner index i, proof πi

ChallengeFairness
Run one last election If winner is not in [N]\M, output 1.

Secure if challenger never outputs 1
with probability greater than c/N.

Three Constructions of SSLE
Obfuscation
Ideal solution, but uses theoretical tools

tFHE
Closer to realistic, only gives a threshold version of security

DDH
“Compromise” solution -- √N communication per election, 1/(√N-c) unpredictability
 Should be suitable for practical use cases

Three Constructions of SSLE
DDH
“Compromise” solution -- √N communication per election, 1/(√N-c) unpredictability
 Should be suitable for practical use cases

Obfuscation
Ideal solution, but uses theoretical tools

tFHE
Closer to realistic, only gives a threshold version of security

SSLE from DDH
The easiest single non-secret leader election

User 1

User 2

User 3

User 4

Registration

User 1

User 2

User 3

User 4

User 5

Election
R∈[N]

User 1

User 2

User 3

User 4

User 5

SSLE from DDH
The easiest single non-secret leader election

How to hide the leader?

User 1

User 2

User 3

User 4

Registration

User 1

User 2

User 3

User 4

User 5

Election
R∈[N]

User 1

User 2

User 3

User 4

User 5

✅ Uniqueness

✅ Fairness

🆇 Unpredictability

SSLE from DDH
1. Commitments

User 1

User 2

User 3

User 4

Registration

User 1

User 2

User 3

User 4

User 5

Election
R∈[N]

User 1

User 2

User 3

User 4

User 5

✅ Uniqueness

✅ Fairness

🆇 Unpredictability

SSLE from DDH
1. Commitments

com(u1)

com(u2)

com(u3)

com(u4)

Registration

com(u1)

com(u2)

com(u3)

com(u4)

com(u5)

Election
R∈[N]

com(u1)

com(u2)

com(u3)

com(u4)

com(u5)

✅ Uniqueness

✅ Fairness

🆇 Unpredictability

SSLE from DDH
1. Commitments
2. Shuffling

com(u1)

com(u2)

com(u3)

com(u4)

Registration

com(u1)

com(u2)

com(u3)

com(u4)

com(u5)

Election
R∈[N]

com(u1)

com(u2)

com(u3)

com(u4)

com(u5)

✅ Uniqueness

✅ Fairness

🆇 Unpredictability

SSLE from DDH
1. Commitments
2. Shuffling

com(u1)

com(u2)

com(u3)

com(u4)

Registration
Part 1

com(u1)

com(u2)

com(u3)

com(u4)

com(u5)

Election
R∈[N]

com(u2)

com(u5)

com(u4)

com(u1)

com(u3)

✅ Uniqueness

✅ Fairness

🆇 Unpredictability

Registration
Part 2 com(u2)

com(u5)

com(u4)

com(u1)

com(u3)

SSLE from DDH
1. Commitments
2. Shuffling
3. Rerandomization

com(u1)

com(u2)

com(u3)

com(u4)

Registration
Part 1

com(u1)

com(u2)

com(u3)

com(u4)

com(u5)

Election
R∈[N]

com(u2)’

com(u5)’

com(u4)’

com(u1)’

com(u3)’

🆇 Uniqueness

🆇 Fairness

🆇 Unpredictability

Registration
Part 2 com(u2)’

com(u5)’

com(u4)’

com(u1)’

com(u3)’

SSLE from DDH
1. Commitments
2. Shuffling
3. Rerandomization & Reidentification

com(u1)

com(u2)

com(u3)

com(u4)

Registration
Part 1

com(u1)

com(u2)

com(u3)

com(u4)

com(u5)

Election
R∈[N]

com(u2)’

com(u5)’

com(u4)’

com(u1)’

com(u3)’

Registration
Part 2 com(u2)’

com(u5)’

com(u4)’

com(u1)’

com(u3)’

A Rerandomizable & Reidentifiable Commitment
Let g ∈ G, G is a group where DDH is hard

Com(k, r) → (gr, grk)

A Rerandomizable & Reidentifiable Commitment
Let g ∈ G, G is a group where DDH is hard

Com(k, r) → (gr, grk)

Rerandomization: (gr, grk) → (grr’, grr’k)

Reidentification: given (u,v), check if uk = v

A Rerandomizable & Reidentifiable Commitment
Let g ∈ G, G is a group where DDH is hard

Com(k, r) → (gr, grk)

Rerandomization: (gr, grk) → (grr’, grr’k)

Reidentification: given (u,v), check if uk = v

Security follows from DDH: (gr, grk, grr’, grr’k) vs (gr, grk, grr’, grz)

SSLE from DDH
1. Commitments
2. Shuffling
3. Rerandomization & Reidentification

com(u1)

com(u2)

com(u3)

com(u4)

Registration
Part 1

com(u1)

com(u2)

com(u3)

com(u4)

com(u5)

Election
R∈[N]

com(u2)’

com(u5)’

com(u4)’

com(u1)’

com(u3)’

Registration
Part 2 com(u2)’

com(u5)’

com(u4)’

com(u1)’

com(u3)’

SSLE from DDH
1. Commitments
2. Shuffling
3. Rerandomization & Reidentification
4. Verification of shuffle

com(u1)

com(u2)

com(u3)

com(u4)

Registration
Part 1

com(u1)

com(u2)

com(u3)

com(u4)

com(u5)

Election
R∈[N]

com(u2)’

com(u5)’

com(u4)’

com(u1)’

com(u3)’

Registration
Part 2 com(u2)’

com(u5)’

com(u4)’

com(u1)’

com(u3)’

SSLE from DDH
1. Commitments
2. Shuffling
3. Rerandomization & Reidentification
4. Verification of shuffle -- NIZK or other users check

com(u1)

com(u2)

com(u3)

com(u4)

Registration
Part 1

com(u1)

com(u2)

com(u3)

com(u4)

com(u5)

Election
R∈[N]

com(u2)’

com(u5)’

com(u4)’

com(u1)’

com(u3)’

Registration
Part 2 com(u2)’

com(u5)’

com(u4)’

com(u1)’

com(u3)’

SSLE from DDH
1. Commitments
2. Shuffling
3. Rerandomization & Reidentification
4. Verification of shuffle -- NIZK or other users check
5. Defend against duplication attacks

com(u1)

com(u2)

com(u3)

com(u4)

Registration
Part 1

com(u1)

com(u2)

com(u3)

com(u4)

com(u5)

Election
R∈[N]

com(u2)’

com(u5)’

com(u4)’

com(u1)’

com(u3)’

Registration
Part 2 com(u2)’

com(u5)’

com(u4)’

com(u1)’

com(u3)’

Duplication Attack

com(u1)

com(u2)

com(u3)

com(u4)

Registration
Part 1

com(u1)

com(u2)

com(u3)

com(u4)

com(u4)

Registration
Part 2 com(u2)’

com(u4)’’

com(u4)’

com(u1)’

com(u3)’

Duplication attack makes it possible for 2 different users to register with a
commitment to the same value

Breaks uniqueness and unpredictability

Preventing Duplication Attacks
How to ensure that users never commit to the same value?

Idea: Derive a secret commitment value and a tag from a master secret

Sample random k

H(k) →kL, kR

Post com(kL) and kR

Registrations to the same secret detected by duplicate kR

(H modeled as random oracle)

Saving Communication
Protocol thus far has required linear communication for each registration

com(k1L)

com(k2L)

com(k3L)

com(k4L)

Registration
Part 1

com(k1L)

com(k2L)

com(k3L)

com(k4L)

com(k5L)

Election
R∈[N]

com(k1L)’

com(k2L)’

com(k3L)’

com(k4L)’

com(k5L)’

com(k1L)’

com(k2L)’

com(k3L)’

com(k4L)’

com(k5L)’

Registration
Part 2

Saving Communication
Protocol thus far has required linear communication for each registration

Registration
Part 1 Election

R∈[N]

Communicating all this is
expensive

Registration
Part 2 com(k1L)’

com(k2L)’

com(k3L)’

com(k4L)’

com(k5L)’

com(k1L)’

com(k2L)’

com(k3L)’

com(k4L)’

com(k5L)’

com(k1L)

com(k2L)

com(k3L)

com(k4L)

com(k1L)

com(k2L)

com(k3L)

com(k4L)

com(k5L)

Saving Communication
Communication/Security tradeoff: instead of shuffling new entry into the whole list,
split the list into a number of buckets and only shuffle into one bucket.

Saving Communication
Communication/Security tradeoff: instead of shuffling new entry into the whole list,
split the list into a number of buckets and only shuffle into one bucket.

com(k1L)

com(k2L)

com(k3L)

...

com(kNL)

com(k1L)

...

com(k√N,L)

com(k√N+1,L)

...

com(k2√N,L)

...

com(kN-√N+1,L)

...

com(kN,L)

Saving Communication
Communication/Security tradeoff: instead of shuffling new entry into the whole list,
split the list into a number of buckets and only shuffle into one bucket.

Larger buckets mean more unpredictability but also more communication

√N sized buckets seems like a good tradeoff

com(k1L)

com(k2L)

com(k3L)

...

com(kNL)

com(k1L)

...

com(k√N,L)

com(k√N+1,L)

...

com(k2√N,L)

...

com(kN-√N+1,L)

...

com(kN,L)

Security
With a deterministic choice of buckets, we get the following theorem:

Security
With a deterministic choice of buckets, we get the following theorem:

We can do better by randomizing the choice of buckets, so an adversary needs to
corrupt O(N) users to guess winner with constant probability

Security
With a deterministic choice of buckets, we get the following theorem:

We can do better by randomizing the choice of buckets, so an adversary needs to
corrupt O(N) users to guess winner with constant probability

Security
With a deterministic choice of buckets, we get the following theorem:

We can do better by randomizing the choice of buckets, so an adversary needs to
corrupt O(N) users to guess winner with constant probability

Open problem: we believe we can do better with a more clever shuffling/bucketing
algorithm, e.g. by using something like a square shuffle [Hastad06]

Security
With a deterministic choice of buckets, we get the following theorem:

We can do better by randomizing the choice of buckets, so an adversary needs to
corrupt O(N) users to guess winner with constant probability

Open problem: we believe we can do better with a more clever shuffling/bucketing
algorithm, e.g. by using something like a square shuffle [Hastad06]

Open problem: constant communication per election (in a practical scheme)

SSLE from Obfuscation
Obfuscation [BGI+01, GGH+13]

Obfuscator iO(C) produces a new circuit C’ such that:

1. C and C’ have the exact same behavior.
2. For any two circuits C0, C1 that have the exact same behavior, no adversary

can distinguish between iO(C0) and iO(C1).

SSLE from Obfuscation
Obfuscation [BGI+01, GGH+13]

Obfuscator iO(C) produces a new circuit C’ such that:

1. C and C’ have the exact same behavior
2. For any two circuits C0, C1 that have the exact same behavior, no adversary

can distinguish between iO(C0) and iO(C1)

Puncturable PRF [BW13, BGI14, KPTZ13]

PRF where you can generate a punctured key that allows you to evaluate the PRF
everywhere except at that point.

Given the punctured key, the value of the PRF at the punctured point is still
pseudorandom.

SSLE from Obfuscation
Plan:

1. Write a program that picks leader using secret key embedded in the program

2. Obfuscate program during trusted setup and distribute to everyone

3. Any participant just needs to post a public key to register for elections

4. Obfuscated program output should allow leader to prove she won

SSLE from Obfuscation
Program to obfuscate, first attempt

P((pk0, …, pkN-1), i, N, R):

SSLE from Obfuscation
Program to obfuscate, first attempt

P((pk0, …, pkN-1), i, N, R):

1. s ←R, pk0, …, pkN-1
2. w←F(k,s)

SSLE from Obfuscation
Program to obfuscate, first attempt

P((pk0, …, pkN-1), i, N, R):

1. s ←R, pk0, …, pkN-1
2. w←F(k,s)
3. b←1 if i = w mod n, b←0 otherwise
4. Output b

SSLE from Obfuscation
Program to obfuscate, first attempt

P((pk0, …, pkN-1), i, N, R):

1. s ←R, pk0, …, pkN-1
2. w←F(k,s)
3. b←1 if i = w mod n, b←0 otherwise
4. Output b

✅ Elects one leader randomly based
 on secret key

🆇 Anyone can learn the leader by
 trying each value of i

SSLE from Obfuscation
Program to obfuscate, second attempt

P((pk0, …, pkN-1), i, N, R):

1. s ←R, pk0, …, pkN-1
2. w←F(k,s)
3. b←1 if i = w mod n, b←0 otherwise
4.

SSLE from Obfuscation
Program to obfuscate, second attempt

P((pk0, …, pkN-1), i, N, R):

1. s ←R, pk0, …, pkN-1
2. (w, r)←F(k,s)
3. b←1 if i = w mod n, b←0 otherwise
4.

SSLE from Obfuscation
Program to obfuscate, second attempt

P((pk0, …, pkN-1), i, N, R):

1. s ←R, pk0, …, pkN-1
2. (w, r)←F(k,s)
3. b←1 if i = w mod n, b←0 otherwise
4. ct←Encrypt(pki, b; r)
5. Output ct

SSLE from Obfuscation
Program to obfuscate, second attempt

P((pk0, …, pkN-1), i, N, R):

1. s ←R, pk0, …, pkN-1
2. (w, r)←F(k,s)
3. b←1 if i = w mod n, b←0 otherwise
4. ct←Encrypt(pki, b; r)
5. Output ct

✅ Elects one leader randomly based
 on secret key

✅ Only user i can decrypt bi

🆇 Not clear how winner can prove
 that she won the election

SSLE from Obfuscation
Program to obfuscate, final attempt

P((pk0, …, pkN-1), i, N, R):

1. s ←R, pk0, …, pkN-1
2. (w, r)←F(k,s)
3. b←1 if i = w mod n, b←0 otherwise
4.

SSLE from Obfuscation
Program to obfuscate, final attempt

P((pk0, …, pkN-1), i, N, R):

1. s ←R, pk0, …, pkN-1
2. (w,r,r’)←F(k,s)
3. b←1 if i = w mod n, b←0 otherwise
4.

SSLE from Obfuscation
Program to obfuscate, final attempt

P((pk0, …, pkN-1), i, N, R):

1. s ←R, pk0, …, pkN-1
2. (w,r,r’)←F(k,s)
3. b←1 if i = w mod n, b←0 otherwise
4. c ←com(b; r)

SSLE from Obfuscation
Program to obfuscate, final attempt

P((pk0, …, pkN-1), i, N, R):

1. s ←R, pk0, …, pkN-1
2. (w,r,r’)←F(k,s)
3. b←1 if i = w mod n, b←0 otherwise
4. c ←com(b; r)
5. ct←Encrypt(pki, r; r’)
6. Output c, ct

SSLE from Obfuscation
Program to obfuscate, final attempt

P((pk0, …, pkN-1), i, N, R):

1. s ←R, pk0, …, pkN-1
2. (w,r,r’)←F(k,s)
3. b←1 if i = w mod n, b←0 otherwise
4. c ←com(b; r)
5. ct←Encrypt(pki, r; r’)
6. Output c, ct

✅ Elects one leader randomly based
 on secret key

✅ Only user i can decrypt bi

✅ Prove leadership by revealing r

SSLE from Obfuscation
Program to obfuscate, final attempt

P((pk0, …, pkN-1), i, N, R):

1. s ←R, pk0, …, pkN-1
2. (w,r,r’)←F(k,s)
3. b←1 if i = w mod n, b←0 otherwise
4. c ←com(b; r)
5. ct←Encrypt(pki, r; r’)
6. Output c, ct

✅ Elects one leader randomly based
 on secret key

✅ Only user i can decrypt bi

✅ Prove leadership by revealing r

Why not encrypt?

SSLE from Obfuscation
Program to obfuscate, final attempt

P((pk0, …, pkN-1), i, N, R):

1. s ←R, pk0, …, pkN-1
2. (w,r,r’)←F(k,s)
3. b←1 if i = w mod n, b←0 otherwise
4. c ←com(b; r)
5. ct←Encrypt(pki, r; r’)
6. Output c, ct

✅ Elects one leader randomly based
 on secret key

✅ Only user i can decrypt bi

✅ Prove leadership by revealing r

Why not encrypt?
If the encryption does not commit, adversary could potentially find bad
randomness that allows a non-winning ciphertext to decrypt to 1

SSLE from Obfuscation
Program to obfuscate, final attempt

P((pk0, …, pkN-1), i, N, R):

1. s ←R, pk0, …, pkN-1
2. (w,r,r’)←F(k,s)
3. b←1 if i = w mod n, b←0 otherwise
4. c ←com(b; r)
5. ct←Encrypt(pki, r; r’)
6. Output c, ct

See paper for proofs of uniqueness, selective fairness, selective unpredictability

✅ Elects one leader randomly based
 on secret key

✅ Only user i can decrypt bi

✅ Prove leadership by revealing r

SSLE from tFHE
Reminder: why can’t we use a generic MPC protocol for SSLE?

Easy DoS opportunity if everyone has to come back for a second round

SSLE from tFHE
Reminder: why can’t we use a generic MPC protocol for SSLE?

Easy DoS opportunity if everyone has to come back for a second round

What if only a few people have to come back and it doesn’t matter which ones?

SSLE from tFHE
Reminder: why can’t we use a generic MPC protocol for SSLE?

Easy DoS opportunity if everyone has to come back for a second round

What if only a few people have to come back and it doesn’t matter which ones?

Tools from threshold crypto can enable this!

SSLE from tFHE
Threshold Encryption:
Standard public-key encryption, but instead of one secret key, many users have
shares of a secret key that produce partial decryptions, with t partial decryptions
needed to produce a plaintext.

SSLE from tFHE
Threshold Encryption:
Standard public-key encryption, but instead of one secret key, many users have
shares of a secret key that produce partial decryptions, with t partial decryptions
needed to produce a plaintext.

Fully Homomorphic Encryption (FHE):
Standard public-key encryption, but ciphertexts can be added together and
multiplied. Expensive operation is multiplication, high multiplicative depth is
especially costly.

SSLE from tFHE
Threshold Encryption:
Standard public-key encryption, but instead of one secret key, many users have
shares of a secret key that produce partial decryptions, with t partial decryptions
needed to produce a plaintext.

Fully Homomorphic Encryption (FHE):
Standard public-key encryption, but ciphertexts can be added together and
multiplied. Expensive operation is multiplication, high multiplicative depth is
especially costly.

Threshold FHE (tFHE):
Combine the two tools above.

SSLE from tFHE
Threshold Encryption:
Standard public-key encryption, but instead of one secret key, many users have
shares of a secret key that produce partial decryptions, with t partial decryptions
needed to produce a plaintext.

Fully Homomorphic Encryption (FHE):
Standard public-key encryption, but ciphertexts can be added together and
multiplied. Expensive operation is multiplication, high multiplicative depth is
especially costly.

Threshold FHE (tFHE):
Combine the two tools above.

Using these tools, we can only really hope for
threshold unpredictability and fairness

SSLE from tFHE
Plan:

1. All participants get a tFHE decryption key

2. Define a computation that picks the leader

3. Evaluate computation under tFHE

4. Some subset of t users post partial decryptions

5. Output of computation somehow secretly determines winner

SSLE from tFHE
Plan:

1. All participants get a tFHE decryption key

2. Define a computation that picks the leader

3. Evaluate computation under tFHE

4. Some subset of t users post partial decryptions

5. Output of computation somehow secretly determines winner

Unlike the obfuscation case, everyone gets the same output.

SSLE from tFHE
Idea:

Each participant registers with a secret k

Output of computation is the secret of a randomly chosen participant

The participant knows her secret, but nobody else knows who owns it

SSLE from tFHE
Idea:

Each participant registers with a secret k

Output of computation is the secret of a randomly chosen participant

The participant knows her secret, but nobody else knows who owns it

Main remaining problems to solve:

1. Efficiently generating randomness inside the tFHE

2. Efficiently using the randomness to pick someone’s secret

SSLE from tFHE
Idea:

Each participant registers with a secret k

Output of computation is the secret of a randomly chosen participant

The participant knows her secret, but nobody else knows who owns it

Main remaining problems to solve:

1. Efficiently generating randomness inside the tFHE

2. Efficiently using the randomness to pick someone’s secret

See paper for other details

SSLE from tFHE

k1

k2

k3

k4

k5

SSLE from tFHE

k1

k2

k3

k4

k5

0

0

0

1

0

= k4

Random weight-1 vector

SSLE from tFHE

k1

k2

k3

k4

k5

0

0

0

1

0

= k4

Random weight-1 vector

How can we efficiently generate a
random weight-1 vector given some
random bits inside the tFHE?

“efficiently” = low multiplicative depth

SSLE from tFHE
1. Start with logN random bits

0 1 1 0

SSLE from tFHE
1. Start with logN random bits

2. Split bits into length-2 vectors
where b → (b, 1-b):
a. 0 → (0,1)
b. 1 → (1,0)

0 1 1 0

(0,1) (1,0) (1,0) (0,1)

SSLE from tFHE
1. Start with logN random bits

2. Split bits into length-2 vectors
where b → (b, 1-b):
a. 0 → (0,1)
b. 1 → (1,0)

3. Take outer product of adjacent
vectors and flatten
a. E.g. (0,1) ⮾ (1,0) = (0,0,1,0)

0 1 1 0

(0,1) (1,0) (1,0) (0,1)

(0,0,1,0) (0,0,0,1)

SSLE from tFHE
1. Start with logN random bits

2. Split bits into length-2 vectors
where b → (b, 1-b):
a. 0 → (0,1)
b. 1 → (1,0)

3. Take outer product of adjacent
vectors and flatten
a. E.g. (0,1) ⮾ (1,0) = (0,0,1,0)

4. Repeat step 3 until only a
single length-N vector remains

0 1 1 0

(0,1) (1,0) (1,0) (0,1)

(0,0,1,0) (0,0,0,1)

(0,0,0,0, 0,0,0,0, 0,0,0,1, 0,0,0,0)

SSLE from tFHE
1. Start with logN random bits

2. Split bits into length-2 vectors
where b → (b, 1-b):
a. 0 → (0,1)
b. 1 → (1,0)

3. Take outer product of adjacent
vectors and flatten
a. E.g. (0,1) ⮾ (1,0) = (0,0,1,0)

4. Repeat step 3 until only a
single length-N vector remains

Multiplicative depth: loglogN

0 1 1 0

(0,1) (1,0) (1,0) (0,1)

(0,0,1,0) (0,0,0,1)

(0,0,0,0, 0,0,0,0, 0,0,0,1, 0,0,0,0)

Single Secret Leader Election
Elect exactly 1 leader such that only the leader learns who she is and can prove it

Our contributions:

Formalization of SSLE requirements and security definitions

Three constructions: from DDH, tFHE, and obfuscation

Single Secret Leader Election
Elect exactly 1 leader such that only the leader learns who she is and can prove it

Our contributions:

Formalization of SSLE requirements and security definitions

Three constructions: from DDH, tFHE, and obfuscation

Paper: https://eprint.iacr.org/2020/025.pdf

Contact: saba@cs.stanford.edu

