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What is Single Secret Leader Election?
A group of participants want to randomly choose exactly one leader, such that:

1. Identity of the leader is known only to the leader and nobody else

2. Leader can later publicly prove that she is the leader

Should work even if many registered participants don’t send messages.
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Applications of SSLE - PoS Blockchains
Need leader to submit blocks

Publicizing leader ahead of time makes the whole protocol vulnerable
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Why Single Secret Leader Election?
Having multiple potential leaders wastes effort and impedes consensus

From Protocol Labs RFC:

- Fork grinding

- Faster convergence

- Simpler protocol

Cost: requires a registration step
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What Makes SSLE Challenging?
Want to minimize long-term storage

Want to minimize communication 

Want to minimize computation

Can’t expect every participant to send messages

Can’t expect every participant to stay online between rounds



Outline
Introduction

Formalizing SSLE

3 SSLE Constructions:

- From DDH & Shuffling

- From obfuscation

- From tFHE



SSLE Requirements
Three security properties:

1. Uniqueness: only one leader is chosen by the election

2. Unpredictability: non-winners cannot guess who the winner is

3. Fairness: each user has 1/N chance of becoming the leader

Goal: robust election where DoS of c/N users disrupts election with probability c/N
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Three security properties:

1. Uniqueness: only one leader is chosen by the election

2. Unpredictability: non-winners cannot guess who the winner is

3. Fairness: each user has 1/N chance of becoming the leader

Goal: robust election where DoS of c/N users disrupts election with probability c/N

Our focus will be on the elections, not on using them to build blockchains.
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SSLE Algorithms

1. Setup
2. Registration
3. Registration verification
4. Election
5. Election verification
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Run setup→pp, st0,sk1, …, skN (if applicable) Choose set M⊆[N], |M|=c

pp, st0, {ski}i∈M

Elections
Register any users

Run an election
Run registration verification for each 
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(if uncorrupted winner)
Winner index i, proof πi

ChallengeUniqueness
(j,πj) for j∈M, for each 
election in election phase Output 1 if for any election, there is 

more than one tuple (k,πj) for which 
election verification accepts.
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Adversary ChallengerSetup

Run setup→pp, st0,sk1, …, skN (if applicable) Choose set M⊆[N], |M|=c

pp, st0, {ski}i∈M

Elections
Register any users

Run an election
Run registration verification for each 
uncorrupted user. Output 0 if any fails.

(if uncorrupted winner)
Winner index i, proof πi

ChallengeUnpredictability
Run one last election

Guess winner is user i∈[N]

If winner is not in [N]\M, output 0.
Otherwise, if winner is user i, output 1.
Secure if challenger never outputs 1 
with probability greater than 1/(N-c).



Formalizing Definitions
Adversary ChallengerSetup

Run setup→pp, st0,sk1, …, skN (if applicable) Choose set M⊆[N], |M|=c

pp, st0, {ski}i∈M

Elections
Register any users

Run an election
Run registration verification for each 
uncorrupted user. Output 0 if any fails.

(if uncorrupted winner)
Winner index i, proof πi

ChallengeFairness
Run one last election If winner is not in [N]\M, output 1.

Secure if challenger never outputs 1 
with probability greater than c/N.



Three Constructions of SSLE
Obfuscation
Ideal solution, but uses theoretical tools

tFHE
Closer to realistic, only gives a threshold version of security

DDH
“Compromise” solution -- √N communication per election, 1/(√N-c) unpredictability
 Should be suitable for practical use cases
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SSLE from DDH
1. Commitments
2. Shuffling
3. Rerandomization & Reidentification
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A Rerandomizable & Reidentifiable Commitment
Let g ∈ G, G is a group where DDH is hard

Com(k, r) → (gr, grk)

Rerandomization: (gr, grk) → (grr’, grr’k)

Reidentification: given (u,v), check if uk = v

Security follows from DDH: (gr, grk, grr’, grr’k) vs (gr, grk, grr’, grz)



SSLE from DDH
1. Commitments
2. Shuffling
3. Rerandomization & Reidentification
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SSLE from DDH
1. Commitments
2. Shuffling
3. Rerandomization & Reidentification
4. Verification of shuffle -- NIZK or other users check
5. Defend against duplication attacks
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Duplication Attack
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Duplication attack makes it possible for 2 different users to register with a 
commitment to the same value

Breaks uniqueness and unpredictability



Preventing Duplication Attacks
How to ensure that users never commit to the same value?

Idea: Derive a secret commitment value and a tag from a master secret

Sample random k

H(k) →kL, kR  

Post com(kL) and kR

Registrations to the same secret detected by duplicate kR

(H modeled as random oracle)
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Protocol thus far has required linear communication for each registration
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Saving Communication
Protocol thus far has required linear communication for each registration

Registration
Part 1 Election

R∈[N] 

Communicating all this is 
expensive
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Saving Communication
Communication/Security tradeoff: instead of shuffling new entry into the whole list, 
split the list into a number of buckets and only shuffle into one bucket.

Larger buckets mean more unpredictability but also more communication

√N sized buckets seems like a good tradeoff
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Security
With a deterministic choice of buckets, we get the following theorem:

We can do better by randomizing the choice of buckets, so an adversary needs to 
corrupt O(N) users to guess winner with constant probability

Open problem: we believe we can do better with a more clever shuffling/bucketing 
algorithm, e.g. by using something like a square shuffle [Hastad06]

Open problem: constant communication per election (in a practical scheme)
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Obfuscator iO(C) produces a new circuit C’ such that:

1. C and C’ have the exact same behavior.
2. For any two circuits C0, C1 that have the exact same behavior, no adversary 

can distinguish between iO(C0) and iO(C1).



SSLE from Obfuscation
Obfuscation [BGI+01, GGH+13]

Obfuscator iO(C) produces a new circuit C’ such that:

1. C and C’ have the exact same behavior
2. For any two circuits C0, C1 that have the exact same behavior, no adversary 

can distinguish between iO(C0) and iO(C1)

Puncturable PRF [BW13, BGI14, KPTZ13]

PRF where you can generate a punctured key that allows you to evaluate the PRF 
everywhere except at that point.

Given the punctured key, the value of the PRF at the punctured point is still 
pseudorandom.



SSLE from Obfuscation
Plan: 

1. Write a program that picks leader using secret key embedded in the program

2. Obfuscate program during trusted setup and distribute to everyone

3. Any participant just needs to post a public key to register for elections

4. Obfuscated program output should allow leader to prove she won
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1. s ←R, pk0, …, pkN-1
2. w←F(k,s)
3. b←1 if i = w mod n, b←0 otherwise
4. Output b

✅ Elects one leader randomly based
     on secret key 

🆇 Anyone can learn the leader by 
     trying each value of i
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Program to obfuscate, second attempt

P((pk0, …, pkN-1), i, N, R):

1. s ←R, pk0, …, pkN-1
2. (w, r)←F(k,s)
3. b←1 if i = w mod n, b←0 otherwise
4. ct←Encrypt(pki, b; r)
5. Output ct

✅ Elects one leader randomly based
     on secret key 

✅ Only user i can decrypt bi

🆇 Not clear how winner can prove 
     that she won the election
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1. s ←R, pk0, …, pkN-1
2. (w,r,r’)←F(k,s)
3. b←1 if i = w mod n, b←0 otherwise
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5. ct←Encrypt(pki, r; r’)
6. Output c, ct
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If the encryption does not commit, adversary could potentially find bad 
randomness that allows a non-winning ciphertext to decrypt to 1



SSLE from Obfuscation
Program to obfuscate, final attempt

P((pk0, …, pkN-1), i, N, R):

1. s ←R, pk0, …, pkN-1
2. (w,r,r’)←F(k,s)
3. b←1 if i = w mod n, b←0 otherwise
4. c ←com(b; r)
5. ct←Encrypt(pki, r; r’)
6. Output c, ct

See paper for proofs of uniqueness, selective fairness, selective unpredictability

✅ Elects one leader randomly based
     on secret key 

✅ Only user i can decrypt bi

✅ Prove leadership by revealing r
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SSLE from tFHE
Reminder: why can’t we use a generic MPC protocol for SSLE?

Easy DoS opportunity if everyone has to come back for a second round

What if only a few people have to come back and it doesn’t matter which ones?

Tools from threshold crypto can enable this!
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Threshold Encryption: 
Standard public-key encryption, but instead of one secret key, many users have 
shares of  a secret key that produce partial decryptions, with t partial decryptions 
needed to produce a plaintext.

Fully Homomorphic Encryption (FHE): 
Standard public-key encryption, but ciphertexts can be added together and 
multiplied. Expensive operation is multiplication, high multiplicative depth is 
especially costly.

Threshold FHE (tFHE): 
Combine the two tools above. 

Using these tools, we can only really hope for 
threshold unpredictability and fairness
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SSLE from tFHE
Plan:

1. All participants get a tFHE decryption key

2. Define a computation that picks the leader

3. Evaluate computation under tFHE

4. Some subset of t users post partial decryptions

5. Output of computation somehow secretly determines winner

Unlike the obfuscation case, everyone gets the same output.
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Idea: 

Each participant registers with a secret k

Output of computation is the secret of a randomly chosen participant

The participant knows her secret, but nobody else knows who owns it

Main remaining problems to solve: 

1. Efficiently generating randomness inside the tFHE

2. Efficiently using the randomness to pick someone’s secret

See paper for other details
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SSLE from tFHE

k1

k2

k3

k4

k5

0

0

0

1

0

= k4

Random weight-1 vector

How can we efficiently generate a 
random weight-1 vector given some 
random bits inside the tFHE?

“efficiently” = low multiplicative depth



SSLE from tFHE
1. Start with logN random bits

0 1 1 0



SSLE from tFHE
1. Start with logN random bits

2. Split bits into length-2 vectors 
where b → (b, 1-b):
a. 0 → (0,1)
b. 1 → (1,0)

0 1 1 0

(0,1) (1,0) (1,0) (0,1)



SSLE from tFHE
1. Start with logN random bits

2. Split bits into length-2 vectors 
where b → (b, 1-b):
a. 0 → (0,1)
b. 1 → (1,0)

3. Take outer product of adjacent 
vectors and flatten
a. E.g. (0,1) ⮾ (1,0) = (0,0,1,0)

0 1 1 0

(0,1) (1,0) (1,0) (0,1)

(0,0,1,0) (0,0,0,1)



SSLE from tFHE
1. Start with logN random bits

2. Split bits into length-2 vectors 
where b → (b, 1-b):
a. 0 → (0,1)
b. 1 → (1,0)

3. Take outer product of adjacent 
vectors and flatten
a. E.g. (0,1) ⮾ (1,0) = (0,0,1,0)

4. Repeat step 3 until only a 
single length-N vector remains

0 1 1 0

(0,1) (1,0) (1,0) (0,1)

(0,0,1,0) (0,0,0,1)

(0,0,0,0,  0,0,0,0,  0,0,0,1,  0,0,0,0)



SSLE from tFHE
1. Start with logN random bits

2. Split bits into length-2 vectors 
where b → (b, 1-b):
a. 0 → (0,1)
b. 1 → (1,0)

3. Take outer product of adjacent 
vectors and flatten
a. E.g. (0,1) ⮾ (1,0) = (0,0,1,0)

4. Repeat step 3 until only a 
single length-N vector remains

Multiplicative depth: loglogN

0 1 1 0

(0,1) (1,0) (1,0) (0,1)

(0,0,1,0) (0,0,0,1)

(0,0,0,0,  0,0,0,0,  0,0,0,1,  0,0,0,0)
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Elect exactly 1 leader such that only the leader learns who she is and can prove it

Our contributions:

Formalization of SSLE requirements and security definitions

Three constructions: from DDH, tFHE, and obfuscation

Paper: https://eprint.iacr.org/2020/025.pdf

Contact: saba@cs.stanford.edu


