
Improving Speed and Security in
Updatable Encryption Schemes

 Dan Boneh Saba Eskandarian Sam Kim Maurice Shih
 Stanford University Stanford University Stanford University Cisco Systems

Key Rotation

Key Rotation

Good Reasons to Rotate Keys

1. Recommended by NIST (Special Publication 800-57)

Good Reasons to Rotate Keys

1. Recommended by NIST (Special Publication 800-57)

2. Recommended by Google (cloud.google.com/kms/docs/key-rotation)

Good Reasons to Rotate Keys

1. Recommended by NIST (Special Publication 800-57)

2. Recommended by Google (cloud.google.com/kms/docs/key-rotation)

3. Required by PCI DSS (PCI DSS 3.6.4)

Good Reasons to Rotate Keys

1. Recommended by NIST (Special Publication 800-57)

2. Recommended by Google (cloud.google.com/kms/docs/key-rotation)

3. Required by PCI DSS (PCI DSS 3.6.4)

…But Why?

Good Reasons to Rotate Keys

Reasons to rotate keys for data stored in the cloud:

- Compromised keys need to be taken out of use

- Proactive refresh of keys

- Access control enforcement

How to Rotate Keys in the Cloud?

Idea 1: send keys to cloud

How to Rotate Keys in the Cloud?

Idea 1: send keys to cloud

How to Rotate Keys in the Cloud?

Idea 1: send keys to cloud

How to Rotate Keys in the Cloud?

Idea 1: send keys to cloud

No Security!!

How to Rotate Keys in the Cloud?

Idea 2: download, re-encrypt, upload

How to Rotate Keys in the Cloud?

Idea 2: download, re-encrypt, upload

How to Rotate Keys in the Cloud?

Idea 2: download, re-encrypt, upload

How to Rotate Keys in the Cloud?

Idea 2: download, re-encrypt, upload

How to Rotate Keys in the Cloud?

Idea 2: download, re-encrypt, upload

How to Rotate Keys in the Cloud?

Idea 2: download, re-encrypt, upload

Note: cloud must be trusted
not to keep old ciphertexts

How to Rotate Keys in the Cloud?

Idea 2: download, re-encrypt, upload

High communication and
client computation cost!

How to Rotate Keys in the Cloud?

Idea 2: download, re-encrypt, upload

High communication and
client computation cost!

Can we do better?

Updatable Encryption [BLMR13, EPRS17, LT18, KLR19, BDGJ19]

Client sends small update token

Server updates ciphertext
without learning key or data

Our Contributions & Roadmap

Improvements over prior security definitions
● Additional requirements for security

Two new constructions of updatable encryption
● From Nested AES: very fast, only supports bounded updates

● From KH-PRF based on RLWE: ~500x faster than prior work

Performance evaluation and comparison to prior work

Recommendations for usage

Security and Functionality Goals

1. Adversary without access to any key does not learn data

Security and Functionality Goals

1. Adversary without access to any key does not learn data

2. Adversary with access to the current key/data cannot get more
data than it has already exfiltrated after rekeying

Security and Functionality Goals

1. Adversary without access to any key does not learn data

2. Adversary with access to the current key/data cannot get more
data than it has already exfiltrated after rekeying

3. Client-server communication small

Security and Functionality Goals

1. Adversary without access to any key does not learn data

2. Adversary with access to the current key/data cannot get more
data than it has already exfiltrated after rekeying

3. Client-server communication small

4. Client computation small

Security and Functionality Goals

1. Adversary without access to any key does not learn data

2. Adversary with access to the current key/data cannot get more
data than it has already exfiltrated after rekeying

3. Client-server communication small

4. Client computation small

Limitations

1. Server computation will be linear

Security and Functionality Goals

1. Adversary without access to any key does not learn data

2. Adversary with access to the current key/data cannot get more
data than it has already exfiltrated after rekeying

3. Client-server communication small

4. Client computation small

Limitations

1. Server computation will be linear

2. Adversary with ongoing access to key updates will still get data

Defining Security [EPRS17]

Four properties to achieve:

- Correctness

- Compactness

- Confidentiality

- Integrity

Defining Security [EPRS17]

Four properties to achieve:

- Correctness

- Compactness

- Confidentiality

- Integrity

Confidentiality

Key 1 Key 2 Key 3 Key 4

Update
Token 1-2

Update
Token 2-3

Update
Token 3-4

Attacker cannot control keys/update tokens that
give a path to key used to encrypt a ciphertext

Confidentiality

Key 1 Key 2 Key 3 Key 4

Update
Token 1-2

Update
Token 2-3

Update
Token 3-4

Attacker cannot control keys/update tokens that
give a path to key used to encrypt a ciphertext

Confidentiality

Key 1 Key 2 Key 3 Key 4

Update
Token 1-2

Update
Token 2-3

Update
Token 3-4

Attacker cannot control keys/update tokens that
give a path to key used to encrypt a ciphertext

Confidentiality

Key 1 Key 2 Key 3 Key 4

Update
Token 1-2

Update
Token 2-3

Update
Token 3-4

Attacker cannot control keys/update tokens that
give a path to key used to encrypt a ciphertext

Confidentiality

Key 1 Key 2 Key 3 Key 4

Update
Token 1-2

Update
Token 2-3

Update
Token 3-4

Attacker cannot control keys/update tokens that
give a path to key used to encrypt a ciphertext

Confidentiality

Key 1 Key 2 Key 3 Key 4

Update
Token 1-2

Update
Token 2-3

Update
Token 3-4

Our definitions additionally require
hiding ciphertext age from attacker

Building Updatable Encryption [BLMR13, EPRS17]

Building Updatable Encryption [BLMR13, EPRS17]

Ciphertext header

Ciphertext Body header

Body

header

Body

...

Building Updatable Encryption [BLMR13, EPRS17]

Ciphertext header

Ciphertext Body
Header

header

Body

header

Body

...

Building Updatable Encryption [BLMR13, EPRS17]

Ciphertext header

Ciphertext Body

Rekey T
oken

Header

header

Body

header

Body

...

Building Updatable Encryption [BLMR13, EPRS17]

Ciphertext header

Ciphertext Body

Rekey T
oken

Header

header

Body

header

Body

...

Building Updatable Encryption [BLMR13, EPRS17]

Ciphertext header

Ciphertext Body

Rekey T
oken

Header

header

Body

header

Body

...

Building Updatable Encryption [BLMR13, EPRS17]

Ciphertext header

Ciphertext Body

Rekey T
oken

Header

“Ciphertext-dependent” model

header

Body

header

Body

...

Updatable Encryption from Nested AES

Very fast, simple scheme

Only requires authenticated encryption (AES-GCM) and a PRG

Updatable Encryption from Nested AES

Very fast, simple scheme

Only requires authenticated encryption (AES-GCM) and a PRG

Caveats:

- Only works for a bounded number of re-encryptions, decided at
encryption time

- Decryption time will be linear in the number of re-encryptions

Updatable Encryption from Nested AES

Ciphertext header

Ciphertext Body

Header key

Updatable Encryption from Nested AES

Ciphertext header

Ciphertext Body

Body key used for
this lock held in
ciphertext header

Header key

Updatable Encryption from Nested AES

Ciphertext header

Ciphertext Body

Header key

Updatable Encryption from Nested AES

Ciphertext header

Ciphertext Body
Ciphertext header

Body key

Header key

Updatable Encryption from Nested AES

Ciphertext header

Ciphertext Body

Ciphertext header

Header key

Updatable Encryption from Nested AES

Ciphertext header

Ciphertext Body

Ciphertext header

Ciphertext header

Header key

Body key

Updatable Encryption from Nested AES

Ciphertext header

Ciphertext Body

Ciphertext header

Ciphertext header

Header key

Updatable Encryption from Nested AES

Ciphertext header

Ciphertext Body

Ciphertext header

Ciphertext header
Re-Encryption: wrap previous layer

Decryption: unwrap all layers

Updatable Encryption from Nested AES

Ciphertext header

Ciphertext Body

Ciphertext header

Ciphertext header
Re-Encryption: wrap previous layer

Decryption: unwrap all layers

Issue: leaks ciphertext age

Updatable Encryption from Nested AES

Ciphertext header

Ciphertext Body

Ciphertext header

Ciphertext header
Re-Encryption: wrap previous layer

Decryption: unwrap all layers

Issue: leaks ciphertext age

Note: this satisfies prior definitions

Updatable Encryption from Nested AES

How to hide ciphertext age?

Ciphertext header

Ciphertext Body

Ciphertext header

Ciphertext header

Updatable Encryption from Nested AES

How to hide ciphertext age?

Idea 1: pad up to fixed max size
with random data

Ciphertext header

Ciphertext Body

Ciphertext header

Ciphertext header

Updatable Encryption from Nested AES

How to hide ciphertext age?

Idea 1: pad up to fixed max size
with random data

But this ruins integrity

Ciphertext header

Ciphertext Body

Ciphertext header

Ciphertext header

Updatable Encryption from Nested AES

How to hide ciphertext age?

Idea 1: pad up to fixed max size
with random data

But this ruins integrity

Idea 2: generate random data
from PRG, include seed in header

Ciphertext header

Ciphertext Body

Ciphertext header

Ciphertext header

Updatable Encryption from Nested AES

Ciphertext header

Ciphertext Body

Ciphertext header

Ciphertext headerHow to hide ciphertext age?

Idea 1: pad up to fixed max size
with random data

But this ruins integrity

Idea 2: generate random data
from PRG, include seed in header

See paper for full scheme

Updatable Encryption from KH-PRFs [BLMR13, EPRS17]

Supports as many re-encryptions as you want

Decryption time does not depend on number of re-encryptions

Still fast, but slower than nested scheme

New caveat: somewhat weaker integrity and age-hiding guarantee

Tool: Key-Homomorphic PRFs (KHPRFs) [NPR99]

Standard PRF (e.g. AES): F(k, x) looks random if not given k

Tool: Key-Homomorphic PRFs (KHPRFs) [NPR99]

Standard PRF (e.g. AES): F(k, x) looks random if not given k

Key-Homomorphic PRF: Same security property, new functionality

Tool: Key-Homomorphic PRFs (KHPRFs) [NPR99]

Standard PRF (e.g. AES): F(k, x) looks random if not given k

Key-Homomorphic PRF: Same security property, new functionality

F(k1, x) ⊞ F(k2, x) = F(k1+ k2, x)

Tool: Key-Homomorphic PRFs (KHPRFs) [NPR99]

Standard PRF (e.g. AES): F(k, x) looks random if not given k

Key-Homomorphic PRF: Same security property, new functionality

F(k1, x) ⊞ F(k2, x) = F(k1+ k2, x)

Example: F(k,x) = H(x)k

Tool: Key-Homomorphic PRFs (KHPRFs) [NPR99]

Standard PRF (e.g. AES): F(k, x) looks random if not given k

Key-Homomorphic PRF: Same security property, new functionality

F(k1, x) ⊞ F(k2, x) = F(k1+ k2, x)

Example: F(k,x) = H(x)k

F(k1, x) * F(k2, x) = H(x)k1
 * H(x)k2 = H(x)k1+k2 = F(k1+ k2, x)

Updatable Encryption from KH-PRFs [EPRS17]

Ciphertext header:
Authenticated Encryption of H(msg) and KH-PRF key k1

Updatable Encryption from KH-PRFs [EPRS17]

Ciphertext header:
Authenticated Encryption of H(msg) and KH-PRF key k1

Ciphertext body:
Encryption of msg in counter mode using KH-PRF

Updatable Encryption from KH-PRFs [EPRS17]

Ciphertext header:
Authenticated Encryption of H(msg) and KH-PRF key k1

Ciphertext body:
Encryption of msg in counter mode using KH-PRF

c0 = m0 + F(k1, 0)
c1 = m1 + F(k1, 1)
…
cn = mn + F(k1, n)

Updatable Encryption from KH-PRFs [EPRS17]

Ciphertext header:
Authenticated Encryption of H(msg) and KH-PRF key k1

Ciphertext body:
Encryption of msg in counter mode using KH-PRF

c0 = m0 + F(k1, 0)
c1 = m1 + F(k1, 1)
…
cn = mn + F(k1, n)

Update process:
1. Download/decrypt header
2. Pick key k2
3. Upload new header and kup = k2- k1

Server updates body encryptions with kup

Updatable Encryption from KH-PRFs [EPRS17]

Ciphertext header:
Authenticated Encryption of H(msg) and KH-PRF key k1

Ciphertext body:
Encryption of msg in counter mode using KH-PRF

c0’ = c0 + F(kup, 0)
c1’ = c1 + F(kup, 1)
…
cn’ = cn + F(kup, n)

Update process:
1. Download/decrypt header
2. Pick key k2
3. Upload new header and kup = k2- k1

Server updates body encryptions with kup

Updatable Encryption from KH-PRFs [EPRS17]

Ciphertext header:
Authenticated Encryption of H(msg) and KH-PRF key k1

Ciphertext body:
Encryption of msg in counter mode using KH-PRF

c0’ = c0 + F(kup, 0) = m0 + F(k2, 0)
c1’ = c1 + F(kup, 1) = m1 + F(k2, 1)
…
cn’ = cn + F(kup, n) = mn + F(k2, n)

Update process:
1. Download/decrypt header
2. Pick key k2
3. Upload new header and kup = k2- k1

Server updates body encryptions with kup

Almost KH-PRFs [BLMR13]

EPRS17 uses a KH-PRF based on the DDH assumption*

 F(k1, x) + F(k2, x) = F(k1+ k2, x)

*In Random Oracle model

Almost KH-PRFs [BLMR13]

EPRS17 uses a KH-PRF based on the DDH assumption*

 F(k1, x) + F(k2, x) = F(k1+ k2, x)

We use a new almost KH-PRF based on the Ring-LWE assumption*

*In Random Oracle model

Almost KH-PRFs [BLMR13]

EPRS17 uses a KH-PRF based on the DDH assumption*

 F(k1, x) + F(k2, x) = F(k1+ k2, x)

We use a new almost KH-PRF based on the Ring-LWE assumption*

F(k1, x) + F(k2, x) = F(k1+ k2, x) + e (where e is small in Zq
n)

*In Random Oracle model

Almost KH-PRFs [BLMR13]

EPRS17 uses a KH-PRF based on the DDH assumption*

 F(k1, x) + F(k2, x) = F(k1+ k2, x)

We use a new almost KH-PRF based on the Ring-LWE assumption*

F(k1, x) + F(k2, x) = F(k1+ k2, x) + e (where e is small in Zq
n)

See paper for construction

*In Random Oracle model

Almost KH-PRFs [BLMR13]

EPRS17 uses a KH-PRF based on the DDH assumption*

 F(k1, x) + F(k2, x) = F(k1+ k2, x)

We use a new almost KH-PRF based on the Ring-LWE assumption*

F(k1, x) + F(k2, x) = F(k1+ k2, x) + e (where e is small in Zq
n)

See paper for construction

Result: ~500x faster performance

*In Random Oracle model

Almost KH-PRFs [BLMR13]

EPRS17 uses a KH-PRF based on the DDH assumption*

 F(k1, x) + F(k2, x) = F(k1+ k2, x)

We use a new almost KH-PRF based on the Ring-LWE assumption*

F(k1, x) + F(k2, x) = F(k1+ k2, x) + e (where e is small in Zq
n)

See paper for construction

Result: ~500x faster performance …but how to handle the noise?

*In Random Oracle model

Updatable Encryption from Almost KH-PRFs

F(k1, x) + F(k2, x) = F(k1+ k2, x) + e (where e is small)

Issue: noisy KH-PRF corrupts message

Updatable Encryption from Almost KH-PRFs

F(k1, x) + F(k2, x) = F(k1+ k2, x) + e (where e is small)

Issue: noisy KH-PRF corrupts message

General solution: error correcting codes

Updatable Encryption from Almost KH-PRFs

F(k1, x) + F(k2, x) = F(k1+ k2, x) + e (where e is small)

Issue: noisy KH-PRF corrupts message

General solution: error correcting codes

Observation: noise is always on low-order bits

Updatable Encryption from Almost KH-PRFs

F(k1, x) + F(k2, x) = F(k1+ k2, x) + e (where e is small)

Issue: noisy KH-PRF corrupts message

General solution: error correcting codes

Observation: noise is always on low-order bits

Simple solution: pad low-order bits of each block with zeros

Evaluation

Encryption and Re-encryption

Throughput for encrypting/re-encrypting 32KB messages (MB/sec)

ReCrypt [EPRS17] Almost KH-PRF Nested (128 layers)

Encrypt 0.12 61.90 1836.9

Re-encrypt 0.15 83.06 2606.8

Encryption and Re-encryption

Throughput for encrypting/re-encrypting 32KB messages (MB/sec)

Almost KH-PRF is ~500x faster than ReCrypt

Nested AES is ~30x faster than almost KH-PRF

ReCrypt [EPRS17] Almost KH-PRF Nested (128 layers)

Encrypt 0.12 61.90 1836.9

Re-encrypt 0.15 83.06 2606.8

Decryption

Decryption

Decryption

Nested construction faster for up to
50 re-encryptions

ReCrypt (not shown) 500x slower
than KH-PRF construction

Decryption

Nested construction faster for up to
50 re-encryptions

ReCrypt (not shown) 500x slower
than KH-PRF construction

Recommendations
Use nested AES construction for
infrequent, routine re-keying

Use KH-PRF for frequent re-keying

Ciphertext Expansion

Nested AES and ReCrypt have
smallest ciphertext expansion

Ciphertext Expansion

Nested AES and ReCrypt have
smallest ciphertext expansion

Recommendations
Use nested AES construction for
infrequent, routine re-keying

If space is costly and computation
is cheap, use ReCrypt for frequent
rekeying

Can we do Better?

Speed: Not by much

- Nested scheme: already close to AES throughput
- Almost KH-PRF: KH-PRF implies key exchange [AMP19]

Can we do Better?

Speed: Not by much

- Nested scheme: already close to AES throughput
- Almost KH-PRF: KH-PRF implies key exchange [AMP19]

Ciphertext expansion: Good place for improvement

One potential approach: more elaborate error-correction to reduce
bits wasted by padding

Improving Updatable Encryption
Improved security definitions for updatable encryption

Two new constructions -- from Nested AES and RLWE-based KH-PRF

Orders of magnitude performance improvement over prior work

Paper: eprint.iacr.org/2020/222.pdf

Source Code: https://github.com/moshih/UpdateableEncryption_Code

Contact: saba@cs.stanford.edu

Encryption and Re-encryption

Where Rq = Zq[X]/(Xn+1)

Confidentiality Security Game [EPRS17]

Adversary ChallengerSetup
Generate h “honest keys” and d “dishonest keys”Send dishonest keys

Game

Confidentiality Security Game [EPRS17]

Adversary ChallengerSetup
Generate h “honest keys” and d “dishonest keys”Send dishonest keys

Game

Encrypt message m under key i

Enc(ki, m)
Encrypt

Confidentiality Security Game [EPRS17]

Adversary ChallengerSetup
Generate h “honest keys” and d “dishonest keys”Send dishonest keys

Game

Encrypt message m under key i

Enc(ki, m)

Encrypt message m0 or m1
under honest key i

Enc(ki, mb)

Guess b

Encrypt

Challenge
Adversary wins if it guesses b correctly.
A scheme is secure if the adversary has negligible
advantage in guessing b.

Confidentiality Security Game [EPRS17]

Adversary ChallengerSetup
Generate h “honest keys” and d “dishonest keys”Send dishonest keys

Game

Encrypt

Challenge
Adversary wins if it guesses b correctly.
A scheme is secure if the adversary has negligible
advantage in guessing b.

Confidentiality Security Game [EPRS17]

Adversary ChallengerSetup
Generate h “honest keys” and d “dishonest keys”Send dishonest keys

Game

Encrypt

Get update token to Re-encrypt
ciphertext c from key i to key j

Update Token

Update ciphertext c from key i to key j
Re-encrypted Ciphertext

Rekey

Challenge
Adversary wins if it guesses b correctly.
A scheme is secure if the adversary has negligible
advantage in guessing b.

Confidentiality Security Game [EPRS17]

Adversary ChallengerSetup
Generate h “honest keys” and d “dishonest keys”Send dishonest keys

Game

Adversary wins if it guesses b correctly.
A scheme is secure if the adversary has negligible
advantage in guessing b.

Encrypt

Challenge

Rekey

Confidentiality Security Game [EPRS17]

Adversary ChallengerSetup
Generate h “honest keys” and d “dishonest keys”Send dishonest keys

Game

Adversary wins if it guesses b correctly.
A scheme is secure if the adversary has negligible
advantage in guessing b.

Encrypt

Challenge

Rekey
Challenger rejects any query that
results in a “trivial win”
e.g., update challenge ciphertext
from key i to a dishonest key

Confidentiality Security Games [EPRS17]

Challenge

Confidentiality Security Games [EPRS17]

Challenge

Encrypt message m0 or m1
under honest key i

Enc(ki, mb)

Guess b

Confidentiality Security Games [EPRS17]

Challenge

Encrypt message m0 or m1
under honest key i

Enc(ki, mb)

Guess b

Re-encrypt ciphertext c0 or c1
from key i to honest key j

Re-encrypted ciphertext

Guess b

Confidentiality Security Games [EPRS17]

Challenge

Encrypt message m0 or m1
under honest key i

Enc(ki, mb)

Guess b

Re-encrypt ciphertext c0 or c1
from key i to honest key j

Re-encrypted ciphertext

Guess b

Prior definitions permit leaking both
whether and how many times a
ciphertext has been re-encrypted.

A Unified Confidentiality Definition
Encrypt message m0 or m1

under honest key i

Enc(ki, mb)

Guess b

Re-encrypt ciphertext c0 or c1
from key i to honest key j

Re-encrypted ciphertext

Guess b

Encrypt message m0 under honest key j
OR Re-encrypt ciphertext c1 from key i to honest key j

Fresh ciphertext or re-encrypted ciphertext

Guess b

A Unified Confidentiality Definition
Encrypt message m0 or m1

under honest key i

Enc(ki, mb)

Guess b

Re-encrypt ciphertext c0 or c1
from key i to honest key j

Re-encrypted ciphertext

Guess b

Encrypt message m0 under honest key j
OR Re-encrypt ciphertext c1 from key i to honest key j

Fresh ciphertext or re-encrypted ciphertext

Guess b
See paper for details

