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Good Reasons to Rotate Keys

1. Recommended by NIST (Special Publication 800-57)

2. Recommended by Google (cloud.google.com/kms/docs/key-rotation)

3. Required by PCI DSS (PCI DSS 3.6.4)

…But Why?



Good Reasons to Rotate Keys

Reasons to rotate keys for data stored in the cloud:

- Compromised keys need to be taken out of use

- Proactive refresh of keys

- Access control enforcement
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How to Rotate Keys in the Cloud?

Idea 1: send keys to cloud

No Security!!
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How to Rotate Keys in the Cloud?

Idea 2: download, re-encrypt, upload

Note: cloud must be trusted 
not to keep old ciphertexts
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How to Rotate Keys in the Cloud?

Idea 2: download, re-encrypt, upload

High communication and 
client computation cost!

Can we do better?



Updatable Encryption [BLMR13, EPRS17, LT18, KLR19, BDGJ19]

Client sends small update token

Server updates ciphertext 
without learning key or data



Our Contributions & Roadmap

Improvements over prior security definitions
● Additional requirements for security

Two new constructions of updatable encryption
● From Nested AES: very fast, only supports bounded updates

● From KH-PRF based on RLWE: ~500x faster than prior work

Performance evaluation and comparison to prior work 

Recommendations for usage
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Security and Functionality Goals

1. Adversary without access to any key does not learn data

2. Adversary with access to the current key/data cannot get more 
data than it has already exfiltrated after rekeying

3. Client-server communication small

4. Client computation small

Limitations

1. Server computation will be linear

2. Adversary with ongoing access to key updates will still get data
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Confidentiality

Key 1 Key 2 Key 3 Key 4

Update 
Token 1-2

Update 
Token 2-3

Update 
Token 3-4

Our definitions additionally require 
hiding ciphertext age from attacker
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Building Updatable Encryption [BLMR13, EPRS17]

Ciphertext header

Ciphertext Body

Rekey T
oken

Header

“Ciphertext-dependent” model

header

Body

header

Body

...
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Updatable Encryption from Nested AES

Very fast, simple scheme

Only requires authenticated encryption (AES-GCM) and a PRG

Caveats: 

- Only works for a bounded number of re-encryptions, decided at 
encryption time

- Decryption time will be linear in the number of re-encryptions
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Ciphertext header

Ciphertext Body

Body key used for 
this lock held in 
ciphertext header

Header key
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Updatable Encryption from Nested AES

Ciphertext header

Ciphertext Body

Ciphertext header

Ciphertext header
Re-Encryption: wrap previous layer

Decryption: unwrap all layers

Issue: leaks ciphertext age

Note: this satisfies prior definitions
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Updatable Encryption from Nested AES

Ciphertext header

Ciphertext Body

Ciphertext header

Ciphertext headerHow to hide ciphertext age?

Idea 1: pad up to fixed max size 
with random data

But this ruins integrity

Idea 2: generate random data 
from PRG, include seed in header

See paper for full scheme



Updatable Encryption from KH-PRFs [BLMR13, EPRS17]

Supports as many re-encryptions as you want

Decryption time does not depend on number of re-encryptions

Still fast, but slower than nested scheme

New caveat: somewhat weaker integrity and age-hiding guarantee



Tool: Key-Homomorphic PRFs (KHPRFs) [NPR99] 

Standard PRF (e.g. AES): F(k, x) looks random if not given k



Tool: Key-Homomorphic PRFs (KHPRFs) [NPR99] 

Standard PRF (e.g. AES): F(k, x) looks random if not given k

Key-Homomorphic PRF: Same security property, new functionality



Tool: Key-Homomorphic PRFs (KHPRFs) [NPR99] 

Standard PRF (e.g. AES): F(k, x) looks random if not given k

Key-Homomorphic PRF: Same security property, new functionality

F(k1, x) ⊞ F(k2, x) = F(k1+ k2, x)



Tool: Key-Homomorphic PRFs (KHPRFs) [NPR99] 

Standard PRF (e.g. AES): F(k, x) looks random if not given k

Key-Homomorphic PRF: Same security property, new functionality

F(k1, x) ⊞ F(k2, x) = F(k1+ k2, x)

Example: F(k,x) = H(x)k   



Tool: Key-Homomorphic PRFs (KHPRFs) [NPR99] 

Standard PRF (e.g. AES): F(k, x) looks random if not given k

Key-Homomorphic PRF: Same security property, new functionality

F(k1, x) ⊞ F(k2, x) = F(k1+ k2, x)

Example: F(k,x) = H(x)k  

F(k1, x) * F(k2, x) = H(x)k1
 * H(x)k2 = H(x)k1+k2 = F(k1+ k2, x)
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Updatable Encryption from KH-PRFs [EPRS17]

Ciphertext header: 
Authenticated Encryption of H(msg) and KH-PRF key k1  

Ciphertext body: 
Encryption of msg in counter mode using KH-PRF

c0’ = c0 + F(kup, 0) = m0 + F(k2, 0)
c1’ = c1 + F(kup, 1) = m1 + F(k2, 1)
…
cn’ = cn + F(kup, n) = mn + F(k2, n)

Update process:
1. Download/decrypt header
2. Pick key k2
3. Upload new header and kup = k2- k1

Server updates body encryptions with kup
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Almost KH-PRFs [BLMR13]

EPRS17 uses a KH-PRF based on the DDH assumption*

 F(k1, x) + F(k2, x) = F(k1+ k2, x)

We use a new almost KH-PRF based on the Ring-LWE assumption*

F(k1, x) + F(k2, x) = F(k1+ k2, x) + e (where e is small in Zq
n)

See paper for construction 

Result: ~500x faster performance …but how to handle the noise?

*In Random Oracle model
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Updatable Encryption from Almost KH-PRFs

F(k1, x) + F(k2, x) = F(k1+ k2, x) + e (where e is small)

Issue: noisy KH-PRF corrupts message

General solution: error correcting codes

Observation: noise is always on low-order bits

Simple solution: pad low-order bits of each block with zeros



Evaluation
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Encryption and Re-encryption

Throughput for encrypting/re-encrypting 32KB messages (MB/sec)

Almost KH-PRF is ~500x faster than ReCrypt

Nested AES is ~30x faster than almost KH-PRF

ReCrypt [EPRS17] Almost KH-PRF Nested (128 layers)

Encrypt 0.12 61.90 1836.9

Re-encrypt 0.15 83.06 2606.8
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Decryption

Nested construction faster for up to 
50 re-encryptions

ReCrypt (not shown) 500x slower 
than KH-PRF construction



Decryption

Nested construction faster for up to 
50 re-encryptions

ReCrypt (not shown) 500x slower 
than KH-PRF construction

Recommendations
Use nested AES construction for 
infrequent, routine re-keying

Use KH-PRF for frequent re-keying



Ciphertext Expansion

Nested AES and ReCrypt have 
smallest ciphertext expansion



Ciphertext Expansion

Nested AES and ReCrypt have 
smallest ciphertext expansion

Recommendations
Use nested AES construction for 
infrequent, routine re-keying

If space is costly and computation 
is cheap, use ReCrypt for frequent 
rekeying
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Speed: Not by much

- Nested scheme: already close to AES throughput
- Almost KH-PRF: KH-PRF implies key exchange [AMP19]



Can we do Better?

Speed: Not by much

- Nested scheme: already close to AES throughput
- Almost KH-PRF: KH-PRF implies key exchange [AMP19]

Ciphertext expansion: Good place for improvement

One potential approach: more elaborate error-correction to reduce 
bits wasted by padding



Improving Updatable Encryption
Improved security definitions for updatable encryption

Two new constructions -- from Nested AES and RLWE-based KH-PRF

Orders of magnitude performance improvement over prior work

Paper: eprint.iacr.org/2020/222.pdf

Source Code: https://github.com/moshih/UpdateableEncryption_Code

Contact: saba@cs.stanford.edu



Encryption and Re-encryption



Where Rq = Zq[X]/(Xn+1)
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A scheme is secure if the adversary has negligible 
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Encrypt

Get update token to Re-encrypt 
ciphertext c from key i to key j
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Update ciphertext c from key i to key j
Re-encrypted Ciphertext
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Confidentiality Security Game [EPRS17]

Adversary ChallengerSetup
Generate h “honest keys” and d “dishonest keys”Send dishonest keys

Game

Adversary wins if it guesses b correctly.
A scheme is secure if the adversary has negligible 
advantage in guessing b. 

Encrypt

Challenge

Rekey
Challenger rejects any query that 
results in a “trivial win”
e.g., update challenge ciphertext 
from key i to a dishonest key
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Confidentiality Security Games [EPRS17]

Challenge

Encrypt message m0 or m1 
under honest key i

Enc(ki, mb)

Guess b

Re-encrypt ciphertext c0 or c1 
from key i to honest key j

Re-encrypted ciphertext

Guess b

Prior definitions permit leaking both 
whether and how many times a 
ciphertext has been re-encrypted.



A Unified Confidentiality Definition
Encrypt message m0 or m1 

under honest key i

Enc(ki, mb)

Guess b

Re-encrypt ciphertext c0 or c1 
from key i to honest key j

Re-encrypted ciphertext

Guess b

Encrypt message m0 under honest key j 
OR Re-encrypt ciphertext c1 from key i to honest key j

Fresh ciphertext or re-encrypted ciphertext

Guess b



A Unified Confidentiality Definition
Encrypt message m0 or m1 

under honest key i

Enc(ki, mb)

Guess b

Re-encrypt ciphertext c0 or c1 
from key i to honest key j

Re-encrypted ciphertext

Guess b

Encrypt message m0 under honest key j 
OR Re-encrypt ciphertext c1 from key i to honest key j

Fresh ciphertext or re-encrypted ciphertext

Guess b
See paper for details


