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A trusted component in an untrusted system
● Protected memory isolates enclave from compromised OS
● Proves authenticity via a process called attestation

○ Is it “post-quantum” secure?
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Communication

Secure Channel
Adversary who controls OS 
still can’t see inside enclave 



EPID Signatures [BL09]

5

Group signature-like primitive that provides two properties:

1. Signatures from any member of a group are 
indistinguishable from each other

2. Users can have their credentials revoked either by a 
blacklisted key or a blacklisted signature

Intel’s EPID signature scheme relies on pairings and is not 
post-quantum secure



EPID Signatures [BL09]

6

ski, certi←Join(...)- interactive protocol between group member and manager 
to join group

σ ←Sign(gpk,ski,certi,m,SIG-RL) - any user who has joined can sign a 
message anonymously as a group member

1/0 ←Verify(gpk,m,KEY-RL,SIG-RL,σ) - signatures only verify if signed by 
a valid, unrevoked group member

KEY-RL’←RevokeKey(KEY-RL,ski) - revoke a group member by key

SIG-RL’←RevokeSig(SIG-RL,σ) - revoke a group member by signature

Security properties: Anonymity and Unforgeability
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ski, certi←Join(...)- interactive protocol between group member and manager 
to join group

σ ←Sign(gpk,ski,certi,m,SIG-RL) - any user who has joined can sign a 
message anonymously as a group member

1/0 ←Verify(gpk,m,KEY-RL,SIG-RL,σ) - signatures only verify if signed by 
a valid, unrevoked group member

KEY-RL’←RevokeKey(KEY-RL,ski) - revoke a group member by key

SIG-RL’←RevokeSig(SIG-RL,σ) - revoke a group member by signature

Security properties: Anonymity and Unforgeability

Our design goal: post-quantum security from symmetric primitives only



Picnic Signatures [CDGORRSZ17]
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Uses ZKB++ MPC-in-the-head type proof system [IKOS07, GMO16]

i.e. proof of knowledge from symmetric primitives

High-level idea: Signature is proof of knowledge of preimage 
of a one-way function

e.g. I know sk such that f(sk)=y



Our Basic Approach [BMW03,CG04]
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Join
User generates pk, sk
Group manager signs pk to form cert

Sign
User signs message with sk
User publishes proof of knowledge of signature as σ

Additionally need to support revocation 
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Join
User Manager

Sign
s = Sign(ski, m)
Proof of Knowledge: I have a certificate on a key sk* and a 
signature s on message m signed with sk*

pki

pki

ski, pki gsk, gpk
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Join

User Manager

tjoin

tjoin, c

ski

tjoin = f(ski, c)

gsk, gpkc
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Sign
r ← {0,1}λ

t = f(ski, r), r



Post-Quantum EPID Signature

16

Sign
r ← {0,1}λ

t = f(ski, r), r
Proof of Knowledge:

1. I know a valid certificate for tjoin, c



Post-Quantum EPID Signature

17

Sign
r ← {0,1}λ

t = f(ski, r), r
Proof of Knowledge:

1. I know a valid certificate for tjoin, c
2. I know ski such that t = f(ski, r) and tjoin = f(ski, c)



Post-Quantum EPID Signature

18

Sign
r ← {0,1}λ

t = f(ski, r), r
Proof of Knowledge:

1. I know a valid certificate for tjoin, c
2. I know ski such that t = f(ski, r) and tjoin = f(ski, c)
3. There is no signature in SIG-RL such that f(ski, r’)=t’

publish proof and t as signature
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Need Choices

Zero Knowledge PoK ZKB++, Ligero, zk-STARK

PRF/CRHF
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Post-quantum EPID signature size (group size 230): 

Need Choices

Zero Knowledge PoK ZKB++, Ligero, zk-STARK

PRF/CRHF AES, MiMC, LowMC

Post-Quantum Signature
from symmetric primitives
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Post-quantum EPID signature size (group size 230): 217MB
Way too big!! Culprit: signature verification inside PoK

Need Choices

Zero Knowledge PoK ZKB++, Ligero, zk-STARK

PRF/CRHF AES, MiMC, LowMC

Post-Quantum Signature
from symmetric primitives

Tree-based, SPHINCS, Fish
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Sign
r ← {0,1}λ

t = f(ski, r), r
Proof of Knowledge:

1. I know a valid certificate for tjoin, c
2. I know ski such that t = f(ski, r) and tjoin = f(ski, c)
3. There is no signature in SIG-RL such that f(ski, r’)=t’

publish proof and t as signature

Requires signature verification!
How can we remove this?
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Each Intel SGX attestation involves contacting Intel, who verifies 
the attestation for you. 

How can we leverage this to reduce signature sizes?
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The Attestation Setting
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Each Intel SGX attestation involves contacting Intel, who verifies 
the attestation for you. 

How can we leverage this to reduce signature sizes?

Idea: If group manager has to be online, maybe it can update 
users’ certificates
User anonymity sets relative to last certificate update

29

Enclave
-Data
-Secrets
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Manager puts user credentials in a Merkle tree and signs root

Users get newest Merkle root/inclusion proof when they 
connect to the manager
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Manager puts user credentials in a Merkle tree and signs root

Users get newest Merkle root/inclusion proof when they 
connect to the manager

Signature on Merkle tree root can be verified outside PoK

Only need much smaller Merkle inclusion proof inside PoK



Signatures for Attestation
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r ← {0,1}λ

t = f(ski, r), r
Proof of Knowledge:

1. I know an inclusion proof for tjoin, c
2. I know ski such that t = f(ski, r) and tjoin = f(ski, c)
3. There is no signature in SIG-RL such that f(ski, r’)=t’

publish proof, t, and signed Merkle root as signature
Similar to post-quantum Ring signatures of Derler et al [DRS17]



Signature Sizes
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Potential application: large data transfer, e.g. streaming movies

*under ideal cipher assumption on LowMC

Group Size RO Model* QRO Model*

27 1.37MB 2.64MB

210 1.85MB 3.59MB

220 3.45MB 6.74MB

230 5.05MB 9.89MB

240 6.65MB 13.0MB




