
Dan Boneh Saba Eskandarian Ben Fisch

Post-Quantum EPID Signatures 
from Symmetric Primitives



Hardware Enclaves

2

A trusted component in an untrusted system
● Protected memory isolates enclave from compromised OS

Untrusted System
Enclave
-Data
-Secrets

Adversary who controls OS 
still can’t see inside enclave 



Hardware Enclaves

3

A trusted component in an untrusted system
● Protected memory isolates enclave from compromised OS
● Proves authenticity via a process called attestation

Untrusted System
Enclave
-Data
-Secrets Attestation/

Communication

Secure Channel
Adversary who controls OS 
still can’t see inside enclave 



Hardware Enclaves

4

A trusted component in an untrusted system
● Protected memory isolates enclave from compromised OS
● Proves authenticity via a process called attestation

○ Is it “post-quantum” secure?

Untrusted System
Enclave
-Data
-Secrets Attestation/

Communication

Secure Channel
Adversary who controls OS 
still can’t see inside enclave 



EPID Signatures [BL09]

5

Group signature-like primitive that provides two properties:

1. Signatures from any member of a group are 
indistinguishable from each other

2. Users can have their credentials revoked either by a 
blacklisted key or a blacklisted signature

Intel’s EPID signature scheme relies on pairings and is not 
post-quantum secure



EPID Signatures [BL09]

6

ski, certi←Join(...)- interactive protocol between group member and manager 
to join group

σ ←Sign(gpk,ski,certi,m,SIG-RL) - any user who has joined can sign a 
message anonymously as a group member

1/0 ←Verify(gpk,m,KEY-RL,SIG-RL,σ) - signatures only verify if signed by 
a valid, unrevoked group member

KEY-RL’←RevokeKey(KEY-RL,ski) - revoke a group member by key

SIG-RL’←RevokeSig(SIG-RL,σ) - revoke a group member by signature

Security properties: Anonymity and Unforgeability



EPID Signatures [BL09]

7

ski, certi←Join(...)- interactive protocol between group member and manager 
to join group

σ ←Sign(gpk,ski,certi,m,SIG-RL) - any user who has joined can sign a 
message anonymously as a group member

1/0 ←Verify(gpk,m,KEY-RL,SIG-RL,σ) - signatures only verify if signed by 
a valid, unrevoked group member

KEY-RL’←RevokeKey(KEY-RL,ski) - revoke a group member by key

SIG-RL’←RevokeSig(SIG-RL,σ) - revoke a group member by signature

Security properties: Anonymity and Unforgeability

Our design goal: post-quantum security from symmetric primitives only



Picnic Signatures [CDGORRSZ17]

8

Uses ZKB++ MPC-in-the-head type proof system [IKOS07, GMO16]

i.e. proof of knowledge from symmetric primitives

High-level idea: Signature is proof of knowledge of preimage 
of a one-way function

e.g. I know sk such that f(sk)=y



Our Basic Approach [BMW03,CG04]

9

Join
User generates pk, sk
Group manager signs pk to form cert

Sign
User signs message with sk
User publishes proof of knowledge of signature as σ

Additionally need to support revocation 



Our Basic Approach [BMW03,CG04]

10

Join
User Manager

Sign
s = Sign(ski, m)
Proof of Knowledge: I have a certificate on a key sk* and a 
signature s on message m signed with sk*

pki

pki

ski, pki gsk, gpk



Post-Quantum EPID Signature

11

Join

User Manager
ski gsk, gpk



Post-Quantum EPID Signature

12

Join

User Manager
ski gsk, gpkc



Post-Quantum EPID Signature

13

Join

User Manager

tjoin

ski

tjoin = f(ski, c)

gsk, gpkc



Post-Quantum EPID Signature

14

Join

User Manager

tjoin

tjoin, c

ski

tjoin = f(ski, c)

gsk, gpkc



Post-Quantum EPID Signature

15

Sign
r ← {0,1}λ

t = f(ski, r), r



Post-Quantum EPID Signature

16

Sign
r ← {0,1}λ

t = f(ski, r), r
Proof of Knowledge:

1. I know a valid certificate for tjoin, c



Post-Quantum EPID Signature

17

Sign
r ← {0,1}λ

t = f(ski, r), r
Proof of Knowledge:

1. I know a valid certificate for tjoin, c
2. I know ski such that t = f(ski, r) and tjoin = f(ski, c)



Post-Quantum EPID Signature

18

Sign
r ← {0,1}λ

t = f(ski, r), r
Proof of Knowledge:

1. I know a valid certificate for tjoin, c
2. I know ski such that t = f(ski, r) and tjoin = f(ski, c)
3. There is no signature in SIG-RL such that f(ski, r’)=t’

publish proof and t as signature



Instantiation

19

Need Choices

Zero Knowledge PoK ZKB++, Ligero, zk-STARK

PRF/CRHF

Post-Quantum Signature
from symmetric primitives



Instantiation

20

Need Choices

Zero Knowledge PoK ZKB++, Ligero, zk-STARK

PRF/CRHF

Post-Quantum Signature
from symmetric primitives



Instantiation

21

Need Choices

Zero Knowledge PoK ZKB++, Ligero, zk-STARK

PRF/CRHF AES, MiMC, LowMC

Post-Quantum Signature
from symmetric primitives



Instantiation

22

Need Choices

Zero Knowledge PoK ZKB++, Ligero, zk-STARK

PRF/CRHF AES, MiMC, LowMC

Post-Quantum Signature
from symmetric primitives



Instantiation

23

Need Choices

Zero Knowledge PoK ZKB++, Ligero, zk-STARK

PRF/CRHF AES, MiMC, LowMC

Post-Quantum Signature
from symmetric primitives

Tree-based, SPHINCS, Fish



Instantiation

24

Need Choices

Zero Knowledge PoK ZKB++, Ligero, zk-STARK

PRF/CRHF AES, MiMC, LowMC

Post-Quantum Signature
from symmetric primitives

Tree-based, SPHINCS, Fish



Instantiation

25

Post-quantum EPID signature size (group size 230): 

Need Choices

Zero Knowledge PoK ZKB++, Ligero, zk-STARK

PRF/CRHF AES, MiMC, LowMC

Post-Quantum Signature
from symmetric primitives

Tree-based, SPHINCS, Fish



Instantiation

26

Post-quantum EPID signature size (group size 230): 217MB
Way too big!! Culprit: signature verification inside PoK

Need Choices

Zero Knowledge PoK ZKB++, Ligero, zk-STARK

PRF/CRHF AES, MiMC, LowMC

Post-Quantum Signature
from symmetric primitives

Tree-based, SPHINCS, Fish



Post-Quantum EPID Signature

27

Sign
r ← {0,1}λ

t = f(ski, r), r
Proof of Knowledge:

1. I know a valid certificate for tjoin, c
2. I know ski such that t = f(ski, r) and tjoin = f(ski, c)
3. There is no signature in SIG-RL such that f(ski, r’)=t’

publish proof and t as signature

Requires signature verification!
How can we remove this?



The Attestation Setting

28

Each Intel SGX attestation involves contacting Intel, who verifies 
the attestation for you. 

How can we leverage this to reduce signature sizes?

28

Enclave
-Data
-Secrets



The Attestation Setting

29

Each Intel SGX attestation involves contacting Intel, who verifies 
the attestation for you. 

How can we leverage this to reduce signature sizes?

Idea: If group manager has to be online, maybe it can update 
users’ certificates
User anonymity sets relative to last certificate update

29

Enclave
-Data
-Secrets



Signatures for Attestation

30

Manager puts user credentials in a Merkle tree and signs root

Users get newest Merkle root/inclusion proof when they 
connect to the manager



Signatures for Attestation

31

Manager puts user credentials in a Merkle tree and signs root

Users get newest Merkle root/inclusion proof when they 
connect to the manager

Signature on Merkle tree root can be verified outside PoK

Only need much smaller Merkle inclusion proof inside PoK



Signatures for Attestation

32

r ← {0,1}λ

t = f(ski, r), r
Proof of Knowledge:

1. I know an inclusion proof for tjoin, c
2. I know ski such that t = f(ski, r) and tjoin = f(ski, c)
3. There is no signature in SIG-RL such that f(ski, r’)=t’

publish proof, t, and signed Merkle root as signature
Similar to post-quantum Ring signatures of Derler et al [DRS17]



Signature Sizes

33

Potential application: large data transfer, e.g. streaming movies

*under ideal cipher assumption on LowMC

Group Size RO Model* QRO Model*

27 1.37MB 2.64MB

210 1.85MB 3.59MB

220 3.45MB 6.74MB

230 5.05MB 9.89MB

240 6.65MB 13.0MB




