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Abstract. Double authentication preventing signatures (DAPS) is a
mechanism, due to Poettering and Stebila, for protecting certificate
authorities (CAs) from coercion. We construct the first lattice-based
DAPS signatures, thereby providing the first post-quantum DAPS system.
We go further and generalize DAPS to a more general mechanism we
call predicate authentication preventing signatures (PAPS). Here, for
a given k-ary predicate φ, a PAPS system for φ is regular signature
scheme. However, if the signer ever signs k messages m1, . . . ,mk such that
φ(m1, . . . ,mk) is true then these k signatures reveal the signer’s secret
key. This self-enforcement mechanism incentivizes the signer to never sign
conflicting messages, namely messages that satisfy the predicate φ. The
k conflicting messages can be signed at different times and the signatures
may be generated independently of one another. We further generalize
to the case when the signatures are generated by multiple signers. We
motivate these primitives, give precise definitions, and provide several
constructions. These primitives are challenging to construct and give rise
to many new elegant open research questions.

1 Introduction

Suppose a web site such as facebook.com buys certificates for its domain from
a certificate authority (CA) called xyz. These certificates enable web browsers
to establish a (one-sided) authenticated session with facebook.com. Sometime
later, a law enforcement agency or a nation state that has jurisdiction over the
CA compels xyz to secretly issue a fresh certificate for facebook.com. The CA
has no choice but to comply. The agency can then use this issued certificate in a
man-in-the-middle attack on facebook.com. Web users have no way to detect
that this is happening and that their traffic is being intercepted. We emphasize
that the rogue certificate is issued by the same CA from which facebook.com

normally buys its certificates. The only user-side signal is that a previously
unseen public-key is being served in a facebook.com certificate, but this happens
frequently under normal operation at a large site and would not generally look
suspicious.

Some technologies, such as certificate transparency (CT) [LLK15] as well
as CONIKS [MBB+15], are designed to detect situations where a CA such as
xyz issues a fake certificate for a domain. These technologies empower an origin



domain, facebook.com in this case, to detect that a fake certificate was issued
for its domain.

Poettering and Stebila [PS14] proposed a very different defense against the
scenario described above. Their idea, called double-authentication-preventing
signatures, or DAPS for short, is as follows: suppose xyz signs all its certificates
using a signature scheme where the signing algorithm uses the secret signing
key sk to sign a pair (subj, payload). Here subj is the domain-name to which the
certificate is issued and payload is all other fields in the certificate. The resulting
signature σ can be verified as a standard digital signature. The key property
of DAPS is the following: suppose xyz publishes two valid signatures σ1 and
σ2 for the same subj but for different payloads, say one on (subj, payload1) and
another on (subj, payload2). Then these two signatures enable anyone to expose
xyz’s secret signing key sk. The point is that xyz can argue that it should not
be forced to issue the rogue certificate for facebook.com because that would
expose its signing key thereby causing massive collateral damage to all of xyz’s
customers. Whether this argument is effective remains to be seen, but the idea
itself is interesting and, as we show below, leads to interesting and challenging
cryptographic questions.

How to use DAPS. There are many practical holes in the basic DAPS proposal
described above that prevent it from being used as is, but with a bit of thought
they can be addressed. However, our goal here is not to argue that DAPS will be
deployed in practice, but rather to motivate this as an interesting cryptographic
question. Towards this goal, we examine broader applications of DAPS as well as
an elegant generalization.

Other applications for DAPS. Beyond certificates, DAPS can be a useful
“self-enforcement” security mechanism. For example, suppose Eve owns a certain
patent and wants to sell the rights to the patent. Bob wants to buy the patent
from Eve, but he is worried that Eve will sell the patent to multiple people. Using
DAPS, Eve can use the patent number as the subject and use “owned by Bob”
as the payload. If she tries to sell the same patent to two different people she will
end up signing two pairs of messages with the same subject, but different payload.
The resulting two signatures can be combined to expose Eve’s private key. If this
private key is of high value to Eve then this self-enforcement mechanism will
prevent her from double-selling the same patent to two people. This way, Bob
has some confidence in the exclusivity of the deal with Eve.

PAPS: DAPS for general predicates. The previous paragraph motivates a
more general elegant primitive which we call predicate-authentication-preventing
signatures, or PAPS for short. LetM be a message space and let φ :Mk → {0, 1}
be a predicate. A PAPS scheme for φ lets the signer sign any message m ∈M,
just as in a regular signature scheme. However, if over the life of the secret key,
the signer signs messages m1, . . . ,mk ∈ M such that φ(m1, . . . ,mk) = 1 then
these k signatures can be combined to expose the signer’s secret signing key. This
secret key extraction should work no matter how the k signatures are generated:
as long as all k signatures are valid, it should be possible to extract the secret key.
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For security, as long as the predicate φ is never satisfied, the signature scheme
should be existentially unforgeable under a chosen message attack, as for regular
signatures.

Notice that DAPS is a special case of PAPS: the key spaceM is a set of pairs
M = S × P and the predicate φdaps is simply the 2-ary predicate:

φdaps
(

(x1, y1), (x2, y2)
)

= 1 ⇔ x1 = x2 and y1 6= y2.

More general predicates come up naturally. For example, suppose a web site
owns k machines and it wants to generate a different key-pair for each machine,
necessitating a different certificate for each machine. The analogue of DAPS is
a k-way DAPS where the message space M is again M = S × P, but now the
predicate φ is the (k + 1)-ary predicate

φ
(

(x1, y1), . . . , (xk+1, yk+1)
)

= 1 ⇔
{
x1 = · · · = xk+1 and
y1, . . . , yk+1 are all distinct.

}
This lets the site use a different certificate for each of its k machines, but if
another certificate is issued then the CA’s secret key is exposed. We give a
construction for this predicate in Section 5 as well as for several other predicates.

Proving security of a PAPS construction is non trivial. For example, suppose
the message space is M = Fp for some prime p. Consider the 3-ary predicate
φ defined as φ(x, y, z) = 1 if and only if x+ y + z = 0. That is, the secret key
should leak if the signer ever signs three messages whose sum is zero. However,
if the signer never signs three messages satisfying this condition, the signature
scheme should be existentially unforgeable. To prove existential unforgeability,
the simulator must interact with the adversary, answering all the adversary’s
adaptive signature queries, and using the adversary’s existential forgery to solve a
challenge problem. The problem is that, because the adversary’s first two queries
can be for arbitrary messages, the simulator must be prepared to provide a
signature for all messages m ∈ M. In particular, the simulator will know the
signature on three messages x, y, z satisfying x+y+z = 0. But then the simulator
can extract the secret signing key, and can produce any forgery by itself, meaning
that the adversary is not helping the simulator. Nevertheless, in Section 5 we
are able to prove security for several generalized predicates, though not for the
3-way summation predicate.

A further generalization: multi-signer PAPS. We can further generalize
the notion of PAPS to the setting of k signers where each signer has its own
signing/public key-pair. As before, let φ be a k-ary predicate φ :Mk → {0, 1}.
Suppose that for i = 1, . . . , k signer number i signs message mi ∈ M. Then, if
φ(m1, . . . ,mj) = 1, then these k signatures (along with the k messages and k
public keys) can be used to expose some secret s chosen at setup time.

Multi-signer PAPS come up naturally when considering certificates. Sup-
pose that the agency, instead of asking xyz to issue the rogue certificate for
facebook.com, it asks a different CA to provide a certificate for facebook.com.
We are now in a 2-signer scenario. If the predicate φdaps can be made to work
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on the two signatures, despite them being from different CAs, then going to a
different CA will not help the agency. We define multi-signer PAPS in Section 6
where we also give several constructions.

1.1 Contributions

In this work we build a lattice-based DAPS construction based on Short Integer
Solutions (SIS) problem and the Learning with Errors (LWE) problem. Our
construction builds upon the structure of the fully homomorphic signature
scheme of Gorbunov et al.[GVW15]. In their construction, a signature consists of
a preimage of a specially formed target matrix of a lattice trapdoor function. To
make key leakage a feature rather than a form of insecurity, we carefully hash the
messages to derive the target matrix such that two different message of the same
subject leads to two matrices for which two preimage matrices leak a trapdoor.
As in [PS14], we prove security in the random oracle model.

Also, as we discuss above, we extend DAPS to a more general primitive that
we call predicate authentication preventing signatures (PAPS). In this setting,
signatures of any messages that satisfy a certain predicate defined on these
messages leak a signer’s secret key. To motivate the notion, we show that for
certain simple, but useful predicates, PAPS can already be constructed from
DAPS.

Finally, we further extend PAPS to a multi-authority settings where signatures
from different signers can also leak some shared private information. We give
formal definitions in this setting and show that our lattice DAPS construction can
be extended to this setting as well using the property that two short preimages
of a specifically formed target matrix of lattice trapdoor functions can be merged
to give a trapdoor of an extended lattice.

1.2 Related Work

Previous works on DAPS. The notion of double-authentication-preventing sig-
natures was introduced by Poettering and Stebila [PS14]. They provide a con-
struction based on extractable trapdoor functions that can be constructed using
the group of quadratic residues modulo a Blum integer. Subsequently, Bellare,
Poettering, and Stebila [BPS17] gave a generic construction based on trapdoor
identification schemes where the private randomness committed by the prover
can be extracted using a trapdoor. We note that although lattice-based identifi-
cation schemes have appeared in the literature [Lyu08,Lyu12], the construction
from [BPS17] does not directly give a lattice-based DAPS construction since lat-
tice trapdoors are randomized with multiple preimages. Constructing DAPS from
lattice-based assumptions is an interesting and important goal since they provide
hardness even against quantum computers, a setting for which the previous two
works do not provide security.
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Delegating restricted signing keys. A number of works in the literature have
focused on schemes that allow an authority to delegate signing keys with
some restricted functionalities (with function privacy). These include attribute-
based signatures [MPR11], functional signatures [BGI14] and policy-based signa-
ture [BF14]. In these schemes, a signer is restricted to sign only certain messages
that satisfy a predicate requirement. One difference between these notions and
DAPS/PAPS is that in the former, the restriction is done by a central authority
to restrict other signers, while in the latter, the authority restricts itself as a
self-enforcement mechanism. Another major difference is that in the former, the
restriction is determined with respect to each individual message while in the
latter, the restriction is determined by all of the past messages that the signer
signs, which is what makes DAPS and PAPS an interesting theoretical notion.

Ring/Group signatures. A similar notion of double-signing preventing mechanism
exists in the setting of group signatures [TX03] and ring signatures [RST01,BKM06]
called Revocable-iff-Linked (RiffL) signatures [ALSY06]. In this setting, a signer
can sign on behalf of a group; however, if it signs twice or more, then the identity
of the signer is leaked. As in the discussion of the previous paragraph, one
difference in the DAPS setting compared to RiffL is that DAPS is a self-enforcing
mechanism, which means that the linkability is not enforced by another trusted
authority of the system, but by itself. However, the more fundamental difference
is that in DAPS, the act of double-signing immediately gives away the signing
key or private data rather than simply leaking the information that it double
signed. As was discussed in [PS14], there are instances where simply leaking
the fact that a CA double signed may not be enough of a penalty (i.e. the 2011
Comodo incident1) and DAPS is designed to cope with these type of situations.

2 Preliminaries

Basic Notation. For an integer N , we write [N ] to denote the set {1, ..., N}.
We use bold lowercase letters (e.g., x,w) to denote vectors and bold uppercase
letters (e.g., A,G) to denote matrices. For a matrix A, we use AT to denote
the trasnpose of A and for a vector x, we use ‖x‖ to denote its Euclidean norm.
In general, we write λ for the security parameters. We say a function ε(λ) is
negligible in λ, if ε(λ) = o(1/λc) for every c ∈ N, and we write negl(λ) to denote
a negligible function in λ. We say that an event occurs with negligible probability
if the probabilty of the event is negl(λ), and an event occurs with overwhelming
probability if its complement occurs with negligible probability.

Entropy and Statistical Distance. The statistical distance between two random
variables X and Y over a finite domain Ω is defined as

SD(X,Y ) =
1

2

∑
ω∈Ω
|Pr[X = ω]− Pr[Y = ω]| .

1https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
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We say that two distribution ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N are

statistically indistinguishable, denoted
stat
≈ , if it holds that SD(Xλ, Yλ) is negligible

in λ. The min-entropy of a random variable X, denoted H∞(X|Y ), is defined as

H∞(X|Y )
def
= − log

(
E

y←Y

[
max
x

Pr[X = x|Y = y]
])

The optimal probability of an unbounded adversary guessing X given the corre-
lated value Y is 2−H∞(X|Y ).

2.1 Circular Security

In this section we briefly recall the notion of circular security. A public key en-
cryption (PKE) consists of three algorithms Πpke = (PKE.KeyGen,PKE.Encrypt,
PKE.Decrypt) where PKE.KeyGen takes in a unary representation of the security
parameter λ and outputs a public and secret key pair (pk, sk). The encryption algo-
rithm takes in a public key pk and a message m and generates a ciphertext ct. The
decryption algorithm takes in a secret key sk and a ciphertext ct and outputs a mes-
sage m. For correctness, we require that for all λ ∈ N, (pk, sk)← PKE.KeyGen(1λ),
we have that PKE.Decrypt(sk,PKE.KeyGen(pk,m)) = m with overwhelming prob-
ability.

Definition 1 (Circular Security [CL01,BRS02]). A public-key encryption
scheme Πpke is circular secure if for all efficient adversaries A, there is a negligible
function negl(λ) such that

AdvcircΠpke,A(λ)
def
=
∣∣∣Pr[Expt

(0)
PKE,A(λ) = 1]− Pr[Expt

(1)
PKE,A(λ) = 1]

∣∣∣ ≤ negl(λ),

where for each b ∈ {0, 1}, and λ ∈ N, the experient Expt
(b)
PKE,A(λ) is defined as

follows:

1. (pk, sk)← PKE.KeyGen(1λ).
2. ct0 ← PKE.Encrypt(pk, 0|sk|).
3. ct1 ← PKE.Encrypt(pk, sk).
4. b′ ← A(pk, ctb).
5. Output b′ ∈ {0, 1}.

Circular security assumption on lattice-based cryptosystems have been used
extensively throughout the literature [Gen09,BV11,BV14,BGV12,GSW13] with
some positive results showing that some common forms of lattice-based encryption
schemes can be shown to be circular secure [ACPS09,ASP12].

2.2 Broadcast Encryption

A broadcast encryption scheme BE [FN93] consists of a tuple of algorithms
Πbe = (BE.KeyGen,BE.Encrypt,BE.Decrypt) defined as follows:
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1. BE.KeyGen(1λ, N) → ({ski}i∈[N ] , pk): On input the security parameter λ
and a positive integer N ∈ N, the key generation algorithm outputs a set of
secret keys {ski}i∈[N ] and a public key pk.

2. BE.Encrypt(pk,msg, T )→ ctT : On input a public key pk, a message m, and
a set of intended recipients T ⊆ [N ], the encryption algorithm outputs a
ciphertext ctT .

3. BE.Decrypt(ski, ct)→ m′: On input a secret key ski and a ciphertext ct, the
decryption algorithm outputs a message m′.

Correctness. For correctness we require that for all λ ∈ N, N ∈ N, T ⊆ [N ],
({ski}i∈[N ] , pk)← BE.KeyGen(1λ, N), we have BE.Decrypt(ski,BE.Encrypt(pk, ct, T )) =
m for all i ∈ T .

Security. For broadcast encryption scheme, we define the following security
notion.

Definition 2. A broadcast encryption scheme Πbe is secure if for all efficient
adversaries A, there is a negligible function negl(λ) such that

AdvΠbe,A(λ)
def
=
∣∣∣Pr[Expt

(0)
BE,A(λ) = 1]− Pr[Expt

(1)
BE,A(λ) = 1]

∣∣∣ ≤ negl(λ),

where for each b ∈ {0, 1}, and λ ∈ N, the experiment Expt
(b)
BE,A is defined as

follows:

– ({ski}i∈[N ] , pk)← BE.KeyGen(1λ, N).

– (T,m0,m1)← A0(pk).

– ctb ← BE.Encrypt(pk,mb).

– b′ ← A1({ski}i∈[N ]\T , ctb).

– Output b′ ∈ {0, 1}.

A number of constructions for broadcast encryption schemes have been
proposed in the literature [FN93,BGW05,BWZ14] with short ciphertext where
the length of the ciphertext scales sublinearly in the number of users in the system.
For linear length ciphertext, a broadcast encryption scheme can be constructed
generically from a regular public key encryption scheme by concatenating the N
instances of the public key encryption schemes.

2.3 Background on Lattices

In this section, we describe some of the results and notations for lattice-based
cryptography that are used throughout the paper.
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Lattice and Gaussians Let n, q,m be positive integers. For a matrix A ∈ Zn×mq ,

we let Λ⊥q (A) denote the lattice {x ∈ Zm : A · x = 0 mod q}. More generally,
for u ∈ Znq , we let Λu

q (A) denote the shifted lattice {x ∈ Zm : A · x = u mod q}.
Regev [Reg09] defined a natural distribution on Λu

q (A) called a discrete
Gaussian parameterized by a scalar s > 0. We use Ds(Λu

q (A)) to denote this

distribution. For a random matrix A ∈ Zn×mq and s > Õ(
√
n), a vector x sampled

from Ds(Λu
q (A)) has Euclidean norm less than s

√
m with overwhelming probabil-

ity. For a matrix U = (u1| . . . |uk) ∈ Zn×kq , we let Ds(ΛU
q (A)) be a distribution

on matrices in Zm×k where the i-th column is sampled from Ds(Λui
q (A)) for

i = 1, ..., k.

The SIS Problem. Let n,m, q, β be positive integers. In the SIS(n,m, q, β) prob-
lem, the adversary is given a uniformly random matrix A ∈ Zn×mq and its goal is
to find a vector u ∈ Zmq with u 6= 0 and ‖u‖ ≤ β such that A · u = 0.

The SIS problem is known to be as hard as certain worst-case lattice problems.
In particular, for any m = poly(n), any β > 0, and any sufficiently large q ≥
β · poly(n), solving SIS(n,m, q, β) is at least as hard as approximating certain
worst-case lattice problems such as the Shortest Vector Problem (GapSVP) and
the Short Independent Vectors Problem (SIVP) on n-dimensional lattices to
within β · poly(n) factor [Ajt96,Mic04,MR07,MP13]. The hardness of SIS is also
implied by the LWE problem.

The LWE Problem. Let n,m, q be positive integers and χ a noise distribution
over Zq. In the LWE(n,m, q, χ) problem, the adversary’s goal is to distinguish
between the two distributions:

(A,AT s + e) and (A,u)

where A
$← Zn×mq , s

$← Znq , e← χm, and u
$← Zmq are uniformly sampled.

We say that a noise distribution χ is B-bounded if its support is in [−B,B].
For any fixed d > 0, and sufficiently large q, taking χ as a certain q/nd-bounded
distribution, the LWE(n,m, q, χ) problem is as hard as approximating certain
worst-case lattice problems such as GapSVP and SIVP on n-dimensional lattices
to within poly(n) factor [Reg09,Pei09,ACPS09,MM11,MP12,BLP+13].

Matrix Norms. For a matrix R ∈ Zk×m, we define the matrix norms:

– ‖R‖ denotes the `2 length of the longest column of R.
– ‖R‖2 is the operator norm of R defined as ‖R‖2 = sup‖x‖=1 ‖Rx‖.

Note that always ‖R‖ ≤ ‖R‖2 ≤
√
k‖R‖ and that ‖R · S‖2 ≤ ‖R‖2 · ‖S‖2.

Lattice Trapdoors. Here, we review the known results about lattice trapdoors
which make the SIS and LWE problems easy to solve with knowledge such
trapdoor. For this work, it is convenient to work with the notion of “gadget”
based trapdoors as formalized in [MP12]. In such setting, there is a structured
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public gadget matrix G ∈ Zn×n`q for ` = dlog qe. A trapdoor for a matrix

A ∈ Zn×mq is an integer matrix R ∈ Zn×n`q such that AR = HG for some
invertible matrix H ∈ Zn×nq . The quality of a trapdoor is measured by the
operator norm of R where the smaller norm ‖R‖2 means higher quality. We will
often use the symbol TA to denote the trapdoor matrix R.

Since the exact constructions and algorithm details of such trapdoors are not
needed for this work, we abstract out these details and summarize the relevant
results in the lemma below.

Lemma 1 ([Ajt96,GPV08,AP11,MP12]). There exist polynomial time algo-
rithms TrapGen,SamPre,Sam, Invert such that the following holds. Given positive
integers n ≥ 1, q ≥ 2, there exists m∗ = O(n log q) such that for k = poly(n), we
have:

– TrapGen(1n, 1m, q)→ (A,TA): A randomized algorithm that when m ≥ m∗,
outputs a full-rank matrix A ∈ Zn×mq and a trapdoor TA ∈ Zm×n` such that
A is statistically close to uniform and ‖R‖2 = O(

√
m).

– SamPre(A,TA,V, s)→ U: A randomized algorithm that on input A ∈ Zn×mq ,

a trapdoor TA of A, a matrix V ∈ Zm×kq , and s = Õ(‖TA‖2), outputs a

random sample U ∈ Zm×k from the distribution Ds(ΛV
q (A)).

– Sam(1m, 1k, q, s)→ U: A randomized algorithm that samples a matrix U ∈
Zm×k such that each of its column is sampled from DZm,s. We have that for
s ≥ ω(

√
logm) the matrix V = A ·U is statistically close to a uniform matrix

in Zn×kq and furthermore, the distribution of U given V is Ds(ΛV
q (A)).

– Invert(A,TA,b)→ s: A deterministic algorithm that on input A ∈ Zn×mq , a

trapdoor TA of A, and an LWE vector b = AT s + e for ‖e‖ ≤ q/O(‖TA‖2),
outputs the unique secret vector s.

To simplify the notation, thoughout the paper, we will always assume that the
gadget matrix G has the same width m as the matrix A output by the algorithm
TrapGen.

2.4 FRD Encoding

In this section, we review an encoding function H : Znq → Zn×nq that maps vectors
in Znq to invertible matrices in Zn×nq with the property that for any two distinct
vectors u and v, the difference between the outputs H(u) and H(v) is never
singular, i.e., det(H(u)−H(v)) 6= 0.

Definition 3. Let q be a prime and n a positive integer. We say that an efficiently
computable function H : Znq → Zn×nq is a full-rank difference (FRD) encoding
scheme if for all distinct u,v ∈ Znq , the matrix H(u)−H(v) ∈ Zn×nq is full rank.

This notion was formalized in [ABB10] and an injective encoding function
satisfying the definition was explicitly constructed by generating an additive
subgroup GFRD of full-rank matrices by embedding ring multiplications into ma-
trices (similar techniques were used in [CD09,PR06,LM06]). We do not explicitly
provide the construction here and mainly use the result as a black box throughout
this work.
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3 Predicate-authentication-preventing Signatures

In this section, we formally define the notion of predicate authentication preventing
signatures (PAPS) which generalizes the notion of double authentication preventing
signatures (DAPS) that was introduced in [PS14].

3.1 PAPS Framework

The syntax for predicate-authentication-preventing signatures largely coincides
with the syntax for standard signature schemes with an additional extraction
algorithm that can extract some private information of the signer (i.e. the signing
key) given the signatures of messages that satisfy a particular predicate.

Definition 4 (PAPS). A predicate-authentication-preventing signature (PAPS)
on a corresponding message space M, and a predicate f :Mk → {0, 1} is a tuple
of efficient algorithms Πpaps = (PAPS.KeyGen,PAPS.Sign,PAPS.Verify,PAPS.Extract)
defined as follows:

– PAPS.KeyGen(1λ) → (sk, vk): On input a security parameter 1λ, the key
generation algorithm PAPS.KeyGen outputs a signing key sk and a verification
key vk.

– PAPS.Sign(sk,msg)→ σ: On input a signing key sk and a message msg ∈M,
the signing algorithm PAPS.Sign outputs a signature σ.

– PAPS.Verify(vk,msg, σ): On input a verification key vk, a message msg ∈M,
and a signature σ, the verification algorithm PAPS.Verify accepts/rejects.

– PAPS.Extract(vk, {(msgi, σi)}i∈[k])→ sk′: On input a verification key vk, and
a set of message and signature pairs, the extraction algorithm PAPS.Extract
outputs the secret key sk′.

Correctness. We say that a PAPS scheme is correct if, for all λ ∈ N, msg ∈M,
and σ ← PAPS.Sign(sk,msg), we have that PAPS.Verify(vk,msg, σ) = 1.

3.2 Extraction

As in the case of [PS14], we can consider two notions of key extractability depend-
ing on whether the signer generates its keys at setup honestly or adversarially.
We call the scenario for which the keys are always generated honestly as the
trusted setup model and the scenario for which the keys can potentially be gener-
ated adversarially as the untrusted setup model. Before defining these two notions
formally, we first define the notion of a compromising set of signatures.

Definition 5 (Compromising set of signatures). Let f :Mk → {0, 1} be a
predicate defined on k messages. Then, for a fixed verification key vk, a set of k
message/signature pairs {(msgi, σi)}i∈[k] is f -compromising if each signature σi
is a valid signature of msgi and the k messages satisfy the predicate f ; that is, if
PAPS.Verify(vk,msgi, σi) = 1 for all i = 1, ..., k and f(msg1, ...,msgk) = 1.
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We now define formally the two notions of key extractability.

Definition 6 (Extractability in trusted setup). Fix a predicate f :Mk →
{0, 1}. We say that a PAPS scheme on a message space M is f -extractable
in the trusted setup model if for all λ ∈ N, secret ∈ S, for all key pairs
(sk, vk) ← PAPS.KeyGen(1λ), and for all compromising set of signatures S =
{(msgi, σi)}i∈[k], we have that PAPS.Extract(vk, S) = sk with overwhelming prob-
ability.

For the untrusted setup model, instead of running the honest key generation
algorithm, we allow an adversary to generate the keys along with a set of
compromising set of signatures and require that the extraction algorithm succeeds
on recovering the signing key from these set of signatures. Formally, we define
extractability in the untrusted setup as follows.

Definition 7 (Extractability in untrusted setup). Fix a predicate f :Mk →
{0, 1}. We say that a PAPS scheme on a message space M is f -extractable if
for all efficient adversary A, we have that

Pr

(
(vk, S = {(msgi, σi)})← A(1λ)

sk′ ← PAPS.Extract(vk, S)
:
S f -compromising
∧ sk′ = sk

)
= 1− negl(λ)

Double-authentication-preventing signatures. The notion of double-authentication-
preventing signatures is a special case of PAPS. Specifically, in DAPS, the data
to be signed MDAPS is split into two parts: a subject and a payload. Then, we
consider the following 2-ary predicate in this message space

FDAPS((subj0, payload0), (subj1, payload1)) =

{
1 if subj0 = subj1, payload0 6= payload1
0 otherwise.

The predicate is designed specifically for the certificate authority setting where a
CA that signs two different messages pertaining to the same subject is penalized
by leaking the CA’s signing key. In this work, we will mainly focus on constructing
PAPS for this particular predicate function.

Remark. An alternative formulation of extractability is allowing some private
information of the signer to be extracted instead of the signing key. In this
case, the key generation algorithm can take in some secret information to be
leaked by a compromising set of signatures and generate the keys accordingly.
This formulation generalizes the notion above where extraction always leaks the
signing key and can be more befitting for certain applications (see section 7).

3.3 Unforgeability

The security game for the unforgeability notion for PAPS is similar to the
standard unforgeability notion for digital signatures where the adversary has
access to a signing oracle and wins if it forges a new signature. However, since
PAPS is designed precisely to leak the signing key on a compromising set of
signatures, we require that the adversary’s queries to the signing oracle is limited
to non-compromising sets of signatures.
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Definition 8 (Unforgeability). An f -extractable PAPS scheme Πpaps = (PAPS.KeyGen,
PAPS.Sign,PAPS.Verify,PAPS.Extract) is unforgeable if for all efficient adversary
A, we have that

AdvufΠpaps,A(λ)
def
= Pr[ExptΠpaps,A,uf = 1] ≤ negl(λ)

where the experiment ExptΠpaps,A,uf is defined as follows:

1. (sk, vk)← PAPS.KeyGen(1λ).

2. (msg∗, σ∗)← AOSign(·)
1 (vk).

3. A wins if Verify∗(msg∗, σ∗) accepts.

where the signing oracle OSign(·) and Verify∗(·, ·) are defined as follows:

– Oracle OSign(·) maintains a list SignedList of all the previous valid queries
made by A. For a query msg, that the adversary makes, OSign(·) checks whether
there exists a compromising set of signatures in SignedList∪ {msg}. If this is
the case, then OSign(·) outputs ⊥. Otherwise, it outputs PAPS.Sign(sk,msg).

– Verifier Verify∗(msg, σ) accepts if msg /∈ SignedList and PAPS.Verify(vk,msg, σ)
accepts.

4 DAPS from Lattices

In this section, we describe our DAPS construction. For clarity of exposition,
we first describe a variant of the dual-Regev encryption scheme [GPV08] which
we will use in our construction as a blackbox. This way, we can abstract out
the details of the encryption component and present our DAPS construction in
a simpler and more intuitive way. After presenting our DAPS construction, we
prove its extractable properties and also show that its security can be based on
the security of the encryption scheme and the SIS hardness assumption.

4.1 Trapdoor dual-Regev Encryption

In this section, we describe a simple variant of the dual-Regev encryption
scheme [GPV08] that we will use as a blackbox for our DAPS construction.
We present the encryption scheme here mainly for clarity of exposition and the
only difference between the encryption scheme presented here and the original
dual-Regev encryption scheme is the use of full trapdoors as the secret key of
the scheme as opposed to a short preimage vector as is the case in [GPV08].

We use n as the security parameter λ. Let m, q be the trapdoor param-
eters dependent on n (Lemma 1). Let χ be a B-bounded noise distribution
where B = O(q/m). We construct a public key encryption scheme Πpke =
(PKE.KeyGen,PKE.Encrypt,PKE.Decrypt) as follows:

– PKE.KeyGen(1n): On input the security parameters 1n, the key generation
algorithm generates trapdoor (A,TA) ← TrapGen(1n, 1m, q) where A ∈
Zn×mq . It sets the public key pk = A and sk = TA.
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– PKE.Encrypt(pk,m): On input the public key pk and a message m ∈ {0, 1},
the encryption algorithm samples uniformly random vectors d, s

$← Znq , and
an error vector from the noise distribution e← χm+1. It computes the vector

b = [A | d]T s + e + [0 | dq/2e ·m].

It outputs the ciphertext ct = (d,b) ∈ Znq × Zm+1
q .

– PKE.Decrypt(sk, ct): On input the secret key sk and a ciphertext ct =
(d,b), the decryption algorithm parses b = (b0, b1). It then computes
s← Invert(A,TA,b) and m′ = b1−dT s. It outputs m ∈ {0, 1} such that m′

is close to dq/2e ·m.

Correctness. Let b = (b0 = AT s + e0, b1 = dT s + e1). The TrapGen algorithm
outputs a trapdoor TA such that ‖TA‖2 = O(

√
m). This means that for B =

O(q/‖TA‖
√
m) = O(q/m), the algorithm Invert(A,TA,b) for b = AT s + e

correctly outputs the secret vector s. Then, b1 − dT s = (dT s + e1 + dq/2e ·m)−
dT s = dq/2e ·m+ ·e1 which is correctly decoded for given bound on the error
distribution χ.

Remark. We note that the correctness still holds with a different trapdoor TA
′

for which TA 6= TA
′ as long as TA

′ is of sufficient quality. In fact, we can
flexibly adjust the parameter B for the noise distribution χ of the scheme to
allow for correct decryption by a slightly lower quality trapdoor. For instance,
if we take the parameter to be B = O(q/m3/2), then a trapdoor TA

′ of quality
‖TA

′‖2 ≤ O(m) can correctly decrypt the ciphertext. This property will be used
for the extractability of our DAPS construction.

Security. The security reduction easily follows from the security proof of the
original dual-Regev encryption scheme and we do not reproduce it here.

Theorem 1. The PKE scheme above is IND-CPA secure assuming that the
LWE(n,m, q, χ) problem is hard.

For our DAPS construction, we will also assume that the dual-Regev PKE
scheme above is circular secure.

4.2 DAPS Construction

We present our construction for DAPS from lattices. Fix a security parameter
n ∈ N and let m, q, s be the corresponding trapdoor parameters. We use a hash
function Hmsg : {0, 1}∗ × {0, 1}∗ → Zn×nq that maps arbitrary messages to a full
rank matrix in GFRD and a hash function Hsubj : {0, 1}∗ → Zn×mq that maps a
subject to an SIS matrix for the scheme. We also use the dual-Regev public key
encryption scheme Πpke = (PKE.KeyGen,PKE.Encrypt,PKE.Decrypt) as decribed
in Section 4.1 with a B-bounded noise distribution where B = O(q/m3/2).
We construct Πdaps = (DAPS.KeyGen,DAPS.Sign,DAPS.Verify,DAPS.Extract) as
follows:
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– DAPS.KeyGen(1n): On the security parameter 1n, the key generation al-
gorithm first runs (A,TA) ← PKE.KeyGen(1n). It then encrypts ct ←
PKE.Encrypt(A,TA) and set sk = TA and vk = (A, ct).

– DAPS.Sign(sk, subj, payload): On input the signing key sk, a subject subj,
and a message payload, the signing algorithm hashes the message Hmsg ←
Hmsg(subj, payload) and also hashes the subject Bsubj ← Hsubj(subj). Then, it
computes

U← SamPre(A,TA,Bsubj + Hmsg ·G, s)

where G is the publicly known gadget matrix. Finally, it outputs U as the
signature.

– DAPS.Verify(vk, subj, payload, σ): On input the verification key vk, a subject
subj, a message payload, and a signature σ = U, the algorithm hashes the
message Hmsg ← Hmsg(subj, payload) and also derives the matrix Bsubj ←
Hsubj(subj). Then, the algorithm verifies that

A ·U = Bsubj + Hmsg ·G

and that ‖U‖ ≤ s ·
√
m.

– DAPS.Extract(vk, (subj1, payload1, σ1), (subj2, payload2, σ2)): On input a ver-
ification key vk = (A, ct), and two subject/message pairs (subj1, payload1),
(subj2, payload2) and their signatures σ1 = U1, σ2 = U2, the extraction
algorithm runs sk′ ← PKE.Decrypt(U1 −U2, ct) and outputs sk′.

Signing Correctness. The correctness follows easily from the correctness of the
trapdoor algorithm SamPre (Lemma 1) and the tail bounds of discrete Gaussian.

Security and Extrability. We now state the security and extractability of the
construction above.

Theorem 2. The DAPS construction above is unforgeable assuming the hardness
of SIS(n,m, q, β) for β = O(s) and circular security of Πpke modeling the hash
functions Hmsg and Hsubj as random oracles.

Theorem 3. Assuming Hmsg as a collision-resistant hash function, the DAPS
construction above is FDAPS-extractable.

5 Extensions of DAPS to other Predicates

In this work, we provide sample PAPS constructions for a number of simple
predicates. Due to space limitations, we describe and prove our constructions in
the full version.
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6 Multi-Authority Setting

For many practical situations, there is not a single authority signer, but multiple
authorities who sign messages. For these type of situations, it is useful to extend
the PAPS framework to the multi-authority setting where any compromising set
of signatures by the different authorities reveals some private information of the
signers.

We note that in this scenario, allowing a compromising set of signatures
to reveal a secret key of a signer is not well-formulated in that any signer can
compute a compromising set of signatures itself using its own signing key and
extract another signer’s secret key. Therefore, for the multi-authority setting, we
let the extraction algorithm to reveal some predefined private data and define
an additional algorithm PAPS.CommGen that takes in this private information
that we denote by secret of a subset of the signers and generates a commitment
comm pertaining to secret. For correctness, we require that a compromising set of
signatures from these subset of signers along with the commitment comm allow
anyone to reveal the private information secret.

Definition 9 (Multi-Authority PAPS). A multi-authority predicate-authentication-
preventing signature (MAPAPS) on a corresponding message space M, secret
space S, and a predicate f :Mk → {0, 1} is a tuple of efficient algorithms con-
sisting of the PAPS algorithms Πpaps = (PAPS.KeyGen,PAPS.Sign,PAPS.Verify,
PAPS.Extract) with two additional algorithms (PAPS.CommGen,PAPS.CommExtract)
defined as follows:

– PAPS.CommGen({vki} , secret)→ commT : On input a set of verification keys
T = {vki} and some private data secret ∈ S, the commitment generation
algorithm generates a public commitment commT .

– PAPS.CommExtract(commT , {(msgi, σi)}i∈[k]) → secret′: On input a public
commitment commT , and a set of message and signature pairs, the extraction
algorithm outputs private date secret′.

Informally speaking, the PAPS.CommGen takes in a set of verification keys
of the signers and generates a hiding commitment of some private data that
belongs to these signers. On a compromising set of signatures produced by any
of these signers allows anyone to extract this private information using the
PAPS.CommExtract algorithm.

Correctness. As in the regular PAPS setting, we require that the algorithms
PAPS.KeyGen,PAPS.Sign,PAPS.Verify satisfies the signing correctness require-
ment as in Section 3.

6.1 Extractability

In addition to the extractability property of PAPS.Extract in the single au-
thority setting as in Section 3, we require an additional extractability in the
multi-authority case where it is required that PAPS.CommExtract extract private
information from the public commitment comm.
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Definition 10. Let f :Mk → {0, 1} be a predicate defined on k messages and
T = {vki} be a set of verification keys. Then, a set of k message/signature pairs{

(msgj , σj)
}
j∈[k] is f -compromising with respect to T if each signature σj is a

valid signature of msgj by some verification key vki ∈ T , and the k messages
satisfy the predicate f ; that is, if for all j ∈ [k], PAPS.Verify(vki,msgj , σj) = 1
for some vki ∈ T and f(msg1, ...,msgk) = 1.

We define the standard extractability condition as follows.

Definition 11. Fix a predicate f :Mk → {0, 1}. We say that a MAPAPS scheme
on a message space M is f -commitment-extractable if for all λ ∈ N , secret ∈ S,
a set of verification keys T = {vki}, commT ← PAPS.CommGen(T, secret) and
for all compromising set of signatures S =

{
(msgj , σj)

}
j∈[k] with respect to T , we

have that PAPS.CommExtract(commT , S) = secret with overwhelming probability.

6.2 Security

Commitment privacy. To prevent the extractability notion above from being
satisfied trivially, we require a privacy requirement on the secret data of PAPS.
Specifically, we require that an adversary with access limited to non-compromising
sets of signatures do not learn information about the secret data. Let N be the
number of authorities in the system.

Definition 12 (Privacy). An f -extractable PAPS scheme Πpaps = (PAPS.KeyGen,
PAPS.CommGen,PAPS.Sign,PAPS.Verify,PAPS.CommExtract) is data-hiding if
for any efficient adversary A, we have that

AdvdhΠpaps,A(λ)
def
=
∣∣∣Pr[Expt

(0)
Πpaps,A,dh(λ) = 1]− Pr[Expt

(1)
Πpaps,A,dh(λ) = 1]

∣∣∣ ≤ negl(λ)

where Expt
(b)
Πpaps,A,dh is defined as follows:

1. (ski, vki)← PAPS.KeyGen(1λ) for i = 1, ..., N .

2. (T, secret0, secret1)← A0({vk}i∈[N ]).

3. commb ← PAPS.CommGen({vki}t∈T , secretb).
4. Output AOSign(·,·)

1 ({ski}i∈[N ]\T , commb).

where the signing oracle OSign(·, ·) is defined as follows:

– Oracle OSign(·, ·) maintains a list SignedList of all the previous valid queries
made by A. For a query msg and an index i ∈ T , that the adversary makes
OSign(·, ·) checks whether there exists a compromising set of signatures with
respect to T in SignedList ∪ {msg}. If this is the case, the OSign(·, ·) outputs
⊥. Otherwise, it outputs PAPS.Sign(sk,msg).
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7 Multi-Authority DAPS

In this section we describe our construction of DAPS in the setting of multi-
authority. We describe the scheme for the DAPS predicate, but the extensions in
Section 5 translate directly to the multi authority setting since it uses the DAPS
predicate as a black box. As in Section 4, we first describe a broadcast encryption
scheme from the variant of the dual-Regev encryption scheme and then present
our MADAPS construction using the broadcast encryption scheme. We prove
that our scheme satisfies both the extractability and security requirements.

7.1 Broadcast Encryption

In this section, we present the broadcast encryption scheme. Again, the construc-
tion by itself is not interesting in that it follows generically from the dual-Regev
public key encryption scheme in Section 4.1, but we present it separately for a
more intuitive presentation. The scheme has the property that a trapdoor for any
extended lattice that is defined by the concatenated public matrices allows for
correct decryption. For clarity, we slightly alter the syntax of broadcast encryption
where the global public key pk is divided into a number of public keys pki for each
user in the system and the encryption algorithm takes in a subset of these public
keys. Fix a security parameter n and let m, q, and χ be the corresponding param-
eter as in Section 4.1. We construct Πbe = (BE.KeyGen,BE.Encrypt,BE.Decrypt)
as follows:

– BE.KeyGen(1n, N): On input the security parameter 1n, the key generation al-
gorithm generates trapdoors (Ai,TAi)← TrapGen(1n, 1m, q) for i = 1, ..., N .
It outputs {(Ai,TAi)}i∈[N ].

– BE.Encrypt({pki}i∈T ,m): On input a set of public keys {pki}i∈T = {Ai}i∈T
and a message m ∈ {0, 1}, the encryption algorithm first samples uniformly

random vectors d, s
$← Znq and error vector e0 ← χm and then computes

ct0 = dT s + e0 + dq/2e ·m

Then for t ∈ T , it generates a fresh error vector from the noise distribution
et ← χm and computes

ctt = AT
t s + et

It outputs ctT = (ct0, {ctt}t∈T ).
– BE.Decrypt(ski, ctT ): On input the secret key ski for i ∈ T and a ciphertext

ctT = (ct0, {ctt}t∈T ), the decryption algorithm computes s← Invert(A,TA, cti).
It then computes m′ = ct0 − dT s and output m ∈ {0, 1} such that m′ is
closest to dq/2e ·m.

We note that each ciphertext component (ct0, cti) makes up a regular ciphertext
of the dual-Regev encryption scheme. Therefore, the correctness of the BE scheme
above follows directly from the correctness of the dual-Regev scheme. Also,
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the construction of the scheme above is a generic concatenation of the regular
public key encryption scheme and therefore, the security follows directly from
the security of the public key encryption scheme.

As in the case of the dual-Regev public key encryption scheme, one can
correctly decrypt the ciphertext even with a different trapdoor for the public
matrices Ai as long as it is of sufficient quality. Furthermore, any trapdoor of a
concatenated matrix [Ai | Aj ] is sufficient to recover the encryption randomness
used in the encryption and therefore decrypt a ciphertext intended for users i
and j. More formally, there exists a decryption algorithm as follows:

– BE.Decrypt′(ski,j , ctT ): On input a trapdoor ski,j = T[Ai|Aj ] for i, j ∈ T ,
and a ciphertext ctT = (ct0, {ctt}t∈T ), the decryption algorithm computes
s ← Invert([Ai|Aj ],TA, [cti|ctj ]). It then computes m′ = ct0 − dT s and
outputs m ∈ {0, 1} such that m′ is closest to dq/2e ·m.

7.2 Multi-Authority DAPS Construction

In this section, we extend the DAPS construction from Section 4.2 to the multi-
authority setting (MADAPS). In addition to the algorithms in Πdaps, we define
two additional algorithms DAPS.CommGen and DAPS.CommExtract as defined
in Section 6. Let Πbe = (BE.KeyGen,BE.Encrypt,BE.Decrypt) be the broadcast
encryption scheme as defined above with B-bounded noise distribution χ where
B = O(q/m3/2). Fix a security parameter n ∈ N and let m, q, s be the corre-
sponding trapdoor parameters. We define the algorithms DAPS.CommGen and
DAPS.CommExtract as follows:

– DAPS.CommGen({vki} , secret): On input a set of verification keys T =
{vki} = {Ai} and some private data secret ∈ S, the commitment gener-
ation algorithm computes ctT ← BE.Encrypt(T, secret) and sets comm = ctT .

– DAPS.CommExtract(commT , (subj0, payload0, σ0), (subj1, payload1, σ1)): On in-
put the parameters commT and a pair of compromising pair of signatures
σ0 = Ui and σ1 = Uj corresponding to vki and vkj respectively, the ex-

traction algorithm concatenates the keys Ũ =

[
Ui

−Uj

]
. It runs secret′ ←

BE.Decrypt′(Ũ, commT ) and outputs the private data secret′.

Extractability and Privacy. We now state the extractability and privacy properties
of the MADAPS construction above. We provide the proofs of the following
theorems in the full version.

Theorem 4. Assuming Hmsg is a collision-resistant hash function, the MADAPS
construction above is FDAPS-extractable.

Theorem 5. The MADAPS construction above is data-hiding assuming that the
broadcast encryption scheme Πbe is secure.
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AP11. Joël Alwen and Chris Peikert. Generating shorter bases for hard random
lattices. Theory of Computing Systems, 48(3):535–553, 2011.

ASP12. Jacob Alperin-Sheriff and Chris Peikert. Circular and kdm security for
identity-based encryption. In PKC. Springer, 2012.

BF14. Mihir Bellare and Georg Fuchsbauer. Policy-based signatures. In PKC.
Springer, 2014.

BGI14. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In PKC. Springer, 2014.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. In ITCS. ACM, 2012.

BGW05. Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast
encryption with short ciphertexts and private keys. In CRYPTO. Springer,
2005.

BKM06. Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures:
Stronger definitions, and constructions without random oracles. In TCC.
Springer, 2006.

BLP+13. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
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